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Abstract

We apply classical statistical decision theory to a large class of treatment choice problems
with partial identification, revealing important theoretical and practical challenges but also
interesting research opportunities. The challenges are: In a general class of problems with
Gaussian likelihood, all decision rules are admissible; it is maximin-welfare optimal to ignore
all data; and, for severe enough partial identification, there are infinitely many minimax-regret
optimal decision rules, all of which sometimes randomize the policy recommendation. The
opportunities are: We introduce a profiled regret criterion that can reveal important differences
between rules and render some of them inadmissible; and we uniquely characterize the minimax-
regret optimal rule that least frequently randomizes. We apply our results to aggregation
of experimental estimates for policy adoption, to extrapolation of Local Average Treatment
Effects, and to policy making in the presence of omitted variable bias.
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1 Introduction

A policy maker must decide between implementing a new policy or preserving the status quo. Her
data provide information about the potential benefits of these two options. Unfortunately, these
data only partially identify payoff-relevant parameters and may therefore not reveal, even in large
samples, the correct course of action. Such treatment choice problems with partial identification
have recently received growing interest; for example, see D’Adamo (2021), Ishihara and Kitagawa
(2021), Yata (2021), Christensen, Moon, and Schorfheide (2022), Kido (2022) or Manski (2022).
Several interesting problems that arise in empirical research can be recast using this framework. A
non-exhaustive list includes extrapolation of experimental estimates for policy adoption (Ishihara
and Kitagawa, 2021; Menzel, 2023), policy-making with quasi-experimental data in the presence
of omitted variable bias (Diegert, Masten, and Poirier, 2022), and extrapolation of Local Average
Treatment Effects (Mogstad, Santos, and Torgovitsky, 2018; Mogstad and Torgovitsky, 2018).

In this paper, we analyze such problems in terms of Wald’s (1950) Statistical Decision Theory,
identifying theoretical and practical challenges as well as new research opportunities. We do so in
a finite-sample framework characterized by a Gaussian likelihood and partial identification. We see
our main goals as clearly articulating the challenges of applying standard decision-theoretic criteria
and exploring some resulting research opportunities, not as advocating a specific criterion (e.g.,
minimax regret) for recommending decision rules.

Challenges: Three optimality criteria are routinely used to endorse or discard decision rules:
admissibility, maximin welfare, and minimax regret. We highlight challenges in applying these
criteria in our setting.

Admissibility. A decision rule is (welfare-)admissible if one cannot improve its expected welfare
uniformly over the parameter space. This is usually considered a weak requirement for a decision
rule to be considered “good”. We show that, whenever problems in our setting exhibit partial
identification, every decision rule, no matter how exotic, is admissible (Theorem 1).

Maximin Welfare. A decision rule is maximin(-welfare) optimal if it attains the highest worst-
case expected welfare. Echoing earlier critiques from Savage (1951) to Manski (2004), we find that
maximin decision rules will preserve the status quo regardless of the data (Theorem 2).

Minimax Regret. A decision rule is minimax-regret (MMR) optimal if it attains the lowest
worst-case expected regret, where an action’s regret is its welfare loss relative to the action that
would be optimal if payoff-relevant parameters were known. In some point-identified treatment
choice problems, the MMR rule is both essentially unique and nonrandomized (Canner, 1970; Stoye,
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2009a; Tetenov, 2012). This may not not be true under partial identification. To make this point, we
specialize our framework to the class of treatment choice problems recently studied by Yata (2021).
For cases where the identified set for payoff relevant parameters is large enough, we discover infinitely
many MMR optimal decision rules, all of which randomize the policy recommendation for some or
all data realizations. This presents a challenge for the application of MMR, at least if one hopes for
the resulting recommendation to be unique. Moreover, as we explain later by means of an example,
different MMR optimal rules can lead to meaningfully different policy choices for the same data.

Opportunities: These challenges motivate new, potentially fruitful research directions. We
discuss two concrete ideas that specifically refine the analysis of MMR optimal decisions.

First, we investigate whether it is useful to profile out some parameters of the risk function. We
specifically analyze profiled regret : by considering a scalar parameter of interest—for example, a
functional γ of the parameters of the model—and reporting worst-case expected regret as function of
possible values of γ. We show, by means of an example, that i) not all decision rules are admissible
with respect to profiled regret and ii) different MMR optimal rules can have strikingly different
profiled-regret functions.

Second, we refine the set of MMR optimal rules by identifying the least randomizing (in a
sense we make precise) MMR optimal rule. Our main motivation is the following trade-off. Recall
that, for a wide range of parameter values, any MMR optimal rule must randomize for some
data realizations. At the same time, despite wide adoption of randomized treatment allocations
in economics and the social sciences for the purpose of experimentation, it might be difficult in
many policy applications to randomize one’s policy. Thus, we look for a rule that recommends such
randomization as infrequently as possible. We explicitly characterize (in Theorem 4) an essentially
unique least randomizing rule for the problems considered by Yata (2021); this rule also exhibits
an attractive regret profile in our main example.

Applications: We illustrate the practical implications of our results for three problems that
recently arose in applied work.

First, we analyze in detail a running example based on Ishihara and Kitagawa’s (2021) “evidence
aggregation” framework. Here, a policy maker is interested in implementing a new policy in country
i = 0. She has access to estimates of the effect of the same policy for other countries i = 1, ..., n and
attempts to extrapolate results using baseline covariates. We give explicit MMR treatment rules
for this example. An interesting finding is that, when the identified set is large enough, the least
randomizing rule can be related to the estimated bounds on the treatment effect of interest and
randomizes only (though not always) if these bounds contain both positive and negative values.
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This illustrates how an estimator of the identified set can be used for optimal decision making.

Second, we study extrapolation of Local Average Treatment Effects (Mogstad et al., 2018;
Mogstad and Torgovitsky, 2018) with binary instrument and no covariates. Here, the payoff-relevant
parameter is a “policy-relevant treatment effect” (Heckman and Vytlacil, 2005) that corresponds to
expanding the complier subpopulation. We show that Theorem 1 applies in this example, so that
all decision rules are admissible. In particular, a decision rule that implements the policy for large
values of the usual instrumental-variables estimator is not dominated.

Third, we consider a policy maker who uses quasi-experimental data to decide on a new policy.
She is willing to assume a constant treatment effect model and unconfoundedness given a set of
covariates (X,W ); however, only X is observable and W is not. In this setting, Diegert et al.
(2022) argue that researchers may be interested in how much selection on unobservables is required
to overturn findings that are based on a feasible linear regression. The least randomizing MMR rule
can inform a complementary, decision-theoretic breakdown point analysis: For a given estimated
effect of the policy, what is the largest effect of unobserved confounding under which it is still
optimal to adopt the seemingly better policy without any hedging? We show that this breakdown
point tolerates more confounding than the one of Diegert et al. (2022).

Related literature. The econometric literature on treatment choice has grown rapidly since
Manski (2004) and Dehejia (2005). When welfare is partially identified, Manski (2000, 2005, 2007a)
and Stoye (2007) provide optimal treatment rules assuming the true distribution of the data is
known. Stoye (2012a,b), Yata (2021), and Ishihara and Kitagawa (2021) focus on finite sample
MMR optimal rules, and Aradillas Fernández, Montiel Olea, Qiu, Stoye, and Tinda (2024) on
multiple prior MMR rules, in such settings. For different settings with point-identified welfare,
finite- and large-sample results on optimal treatment choice rules were derived by Canner (1970),
Chen and Guggenberger (2024), Hirano and Porter (2009, 2020), Kitagawa, Lee, and Qiu (2022),
Schlag (2006), Stoye (2009a), and Tetenov (2012). Christensen et al. (2022) extend Hirano and
Porter’s (2009) limit experiment framework to a class of partially identified settings; see on this
also Kido (2023). Treatment choice is furthermore related to a large literature on optimal policy
learning that contains many results for point identified (Bhattacharya and Dupas, 2012; Kitagawa
and Tetenov, 2018, 2021; Mbakop and Tabord-Meehan, 2021; Kitagawa and Wang, 2020; Athey
and Wager, 2021; Kitagawa et al., 2021; Ida et al., 2022) as well as partially identified (Kallus and
Zhou, 2018; Ben-Michael et al., 2021, 2022; D’Adamo, 2021; Christensen et al., 2022; Adjaho and
Christensen, 2022; Kido, 2022; Lei et al., 2023) treatment choice that may condition on covariates.
Bayesian aspects of treatment choice are discussed in Chamberlain (2011).
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The remainder of this paper is organized as follows: Section 2 introduces the formal framework
and the running example. Section 3 is devoted to the aforementioned challenges, whereas Section
4 focuses on the opportunities. The applications are presented in Section 5. Section 6 concludes.
Proofs and additional technical results can be found in Appendix A and Online Appendix B.

2 Notation and Framework

Statistical decision theory calls for three ingredients: the menu of actions available, their
consequences as a function of an unknown state of the world, and a statistical model of how the
data distribution depends on that state. We now present these elements and lay out an example
that will be used to illustrate objects, terms, and results throughout.

The policy maker can choose an action a ∈ [0, 1], which we interpret as the proportion of a
population that will be randomly assigned to the new policy. Thus, a = 1 means that everyone
is exposed to the new policy and a = 0 means that the status quo is preserved. Under this
interpretation, a = .5 means that 50% of the population will be exposed at random to the new
policy; however, the formal development equally applies to either individual or population-level
randomization. Our interpretation abstracts from integer issues arising with small populations.

The payoff for the policy maker when taking action a ∈ [0, 1] is captured by a welfare function

W (a, θ) := aW (1, θ) + (1− a)W (0, θ), (2.1)

where θ ∈ Θ is an unknown state of the world or parameter (possibly of infinite dimension) and
W (1, · ) : Θ → R and W (0, · ) : Θ → R are known functions. Thus, welfare is linear in the action, a
common assumption in the literature.1 The form of (2.1) also implies that if θ were known to the
policy maker, her optimal choice of action would simply be

1 {U(θ) ≥ 0} , where U(θ) := W (1, θ)−W (0, θ). (2.2)

Following Hirano and Porter (2009), we refer to U(θ) as the welfare contrast at θ. Thus, the policy
maker’s optimal action in (2.2) is to expose the whole population to the new policy if the welfare

1In particular, this applies if W (·, θ) is an expectation and, for the case where randomization is interpreted
as fractional assignment, there are no spillover effects or externalities. These assumptions are the default in the
literature. An exception is Manski and Tetenov (2007), who consider the welfare of an action to be a concave
transformation of W (·, θ).
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contrast is nonnegative and to preserve the status quo otherwise.

The policy maker observes a realization of Y ∈ Rn distributed as

Y ∼ N(m(θ),Σ). (2.3)

Here, the function m(· ) : Θ → Rn and the positive definite covariance matrix Σ are known.
However, m(·) need not be injective: m(θ) = m(θ′) does not imply θ = θ′. As a result, even
perfectly identifying m(θ) (from infinite amount of data) need not imply identifying the optimal
action.

In economics applications, the normality assumption in (2.3) is unlikely to hold exactly; however,
the data can often be summarized by statistics that are asymptotically normal and whose asymptotic
variances can be estimated. Treating the limiting model as a finite-sample statistical model then
eases exposition and allows us to focus on the core features of the policy problem. Indeed, working
directly with such a limiting model is common in applications of statistical decision theory to
econometrics; see Müller (2011) and the references therein for theoretical support and applications
in the context of testing problems and Ishihara and Kitagawa (2021), Stoye (2012a), or Tetenov
(2012) for precedents in closely related work.

We finally define a decision rule, d : Rn → [0, 1], as (measurable) mapping from the data Y to
the unit interval. We let Dn denote the set of all decision rules. We call d ∈ Dn non-randomized if
d(y) ∈ {0, 1} for (Lebesgue) almost every y ∈ Rn and randomized otherwise.

Running Example: Our running example is a special case of Ishihara and Kitagawa’s
(2021; see also Manski (2020)) “evidence aggregation” framework. A policy maker is interested in
implementing a new policy in country i = 0 and observes estimates of the policy’s effect for countries
i = 1, ..., n. Let Y = (Y1, ..., Yn)

⊤ ∈ Rn denote such experimental estimates and let (x0, . . . , xn) be
nonrandom, d-dimensional baseline covariates. The policy maker is willing to extrapolate from her
data by assuming that the welfare contrast of interest equals U(θ) = θ(x0) and that

Y =


Y1
...
Yn

 ∼ N(m(θ),Σ), m(θ) =


θ(x1)

...
θ(xn)

 , Σ = diag(σ2
1, . . . , σ

2
n),

where θ : Rd → R is an unknown Lipschitz function with known constant C. For simplicity, in
the example we write µi for θ(xi) henceforth, thus Yi ∼ N(µi, σ

2
i ). We also assume w.l.o.g. that

countries are arranged in nondecreasing order of ∥xi − x0∥. While our analysis extends to x1 = x0,
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we focus on the case of x1 ̸= x0, so that the sign of µ0 is not necessarily identified. Finally, we assume
that (x1, . . . , xn) are distinct. Even if this were not the case in raw data, one would presumably want
to induce it (by adding fixed effects, whose size can be bounded) because the Lipschitz constraint
would otherwise imply that countries with same x exhibit no heterogeneity whatsoever. □

3 Challenges

In statistical decision theory, three criteria are commonly used to recommend decision rules:
admissibility, maximin welfare, and minimax regret.2 In this section, we show that the application
of these criteria to our setting presents nontrivial challenges.

3.1 Everything is Admissible

Let Em(θ)[·] denote expectation with respect to Y ∼ N(m(θ),Σ). Recall the following definition:

Definition 1. A rule d ∈ Dn is (welfare-)admissible if there does not exist d′ ∈ Dn such that

Em(θ)[W (d′(Y ), θ)] ≥ Em(θ)[W (d(Y ), θ)], ∀θ ∈ Θ,

with strict inequality for some θ ∈ Θ.

Thus, a rule is admissible if it is not dominated (in the usual sense of weak dominance
everywhere and strict dominance somewhere). This is generally considered a minimal but compelling
requirement for a decision rule to be “good” and goes back at least to Wald (1950). Admissibility
can be used to recommend classes of rules whose payoff cannot be uniformly improved and/or whose
members improve uniformly on non-members, as in complete class theorems (Karlin and Rubin,
1956; Manski and Tetenov, 2007); conversely, one may use it to caution against particular (classes
of) decision rules, as was recently done by Andrews and Mikusheva (2022).

Our first result shows that, under mild assumptions, admissibility cannot serve either purpose
in our problem. This is because any decision rule is admissible. To formalize this, let

M := {µ ∈ Rn : m(θ) = µ, θ ∈ Θ} (3.1)
2See Stoye (2012b) and references therein for theoretical trade-offs between these criteria. For example, maximin

violates von Neumann-Morgenstern Independence, whereas minimax regret violates a menu independence axiom.
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collect all means that can be generated as θ ranges over Θ. We refer to elements µ ∈ M as
reduced-form parameters because they are identified in the statistical model (2.3).3 Define the
identified set for the welfare contrast as function of µ as

I(µ) := {u ∈ R : U(θ) = u,m(θ) = µ, θ ∈ Θ} (3.2)

and the corresponding upper and lower bounds as

I(µ) := sup I(µ), I(µ) := inf I(µ). (3.3)

When we refer to models as “partially identified,” we henceforth mean that partial identification
obtains on an open set in parameter space (i.e., not almost nowhere).4

Definition 2 (Nontrivial partial identification). The treatment choice problem with payoff function
(2.1) and statistical model (2.3) exhibits nontrivial partial identification if there exists an open set
S ⊆M ⊆ Rn such that

I(µ) < 0 < I(µ), for all µ ∈ S.

Running Example—Continued: The identified set for the welfare contrast µ0 is

I(µ) = {u ∈ R : |µi − u| ≤ C ∥xi − x0∥ , i = 1, . . . , n}.

Its extrema can be written as intersection bounds:

I(µ) = max
i=1,...,n

{µi − C ∥xi − x0∥}, I(θ) = min
i=1,...,n

{µi + C ∥xi − x0∥} .

For µ sufficiently close to the zero vector, we therefore have nontrivial partial identification.

□

We are now ready to state the first main result.

Theorem 1. If a treatment choice problem with payoff function (2.1) and statistical model (2.3)
exhibits nontrivial partial identification in the sense of Definition 2, then every decision rule d ∈ Dn

3The notation is consistent with our running example, in which the observable moments are (µ1, . . . , µn).
4For simplicity of exposition, Definition 2 is stated in a way that forces M to have full measure in Rn. This would,

for example, exclude equality constraints. For the purpose of Theorem 3 below, we can weaken the assumption to
allow such cases as long as S is rich within M .
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is (welfare-)admissible.

Proof. See Appendix A.1.

For a proof sketch, suppose by contradiction that some rule d is inadmissible. Then some other
rule d′ dominates it. This d′ must perform weakly better at every θ ∈ m−1(S), where S is the
set that appears in Definition 2. Because of nontrivial partial identification, all θ ∈ m−1(S) are
compatible with positive and negative welfare contrast U(θ). This implies that

Em(θ)[d(Y )] = Em(θ)[d
′(Y )] for each θ ∈ m−1(S).

By i) completeness of the Gaussian statistical model in (2.3) and ii) mutual absolute continuity of
the Gaussian and Lebesgue measures in Rn, we then have d(·) = d′(·) (Lebesgue) almost everywhere
in Rn, a contradiction.5

Remark 1. To see that partial identification is essential in this result, let n = 1, Θ = R, m(θ) =

W (1, θ) = θ, and W (0, θ) = 0. In this problem, the policy maker observes a noisy signal, Y ∼
N(θ, σ2), of the payoff relevant parameter θ ∈ R. There is no partial identification, and θ determines
the optimal choice of action. By Karlin and Rubin’s (1956, Theorem 2) classic result, any decision
rule that is not a threshold rule (i.e., is not of form 1{Y > c} for some fixed c ∈ R ∪ {−∞,∞}) is
dominated. In fact, the class just defined is complete.

Remark 2. While completeness can be weakened, it cannot be dropped. To see this, suppose that
all elements of Σ are zero, so that Y = m(θ) and a decision rule is really a mapping d :M → [0, 1].
Then any rule that does not set d(µ) = 1 (d(µ) = 0) when I(µ) > 0 (I(µ) < 0) is dominated.

Theorem 1 admits an optimistic though also a pessimistic reading. The positive interpretation is
that the procedures suggested in the related literature will all perform well relative to one another in
some parts of parameter space. This is an important observation because some of these suggestions
contain novel or nonstandard components. For example, Ishihara and Kitagawa (2021) place ex-
ante restrictions on the class of decision rules, while Christensen et al. (2022) transform the original
loss function by profiling out partially identified parameters. By Theorem 1, all these approaches
are at least admissible. This was arguably obvious in the former case (since for any linear threshold
rule, it is easy to find a prior that it uniquely best responds to) but certainly not the latter one.

5A family P of distributions P is complete if EP [f(X)] = 0 for all P ∈ P implies f(x) = 0 P -almost everywhere, for
every P ∈ P. See, for example, Lehmann and Romano (2005) p.115. The proof extends to any sampling distribution
satisfying i) and ii). Moreover, because decision rules are bounded, it suffices to verify bounded completeness.
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The negative interpretation is that no rule, regardless how eccentric it may appear, is dominated.
This makes it difficult to recommend a rule or a class of rules, at least without commitment to a
more specific decision-theoretic criterion or focus on a particular part of parameter space.

3.2 Maximin Welfare is Ultra-Pessimistic

We next analyze the maximin welfare criterion. Our main result echoes earlier findings by Savage
(1951) and Manski (2004): Maximin typically leads to “no-data rules” that preserve the status quo.

Definition 3. A rule dmaximin ∈ Dn is maximin optimal if

inf
θ∈Θ

Em(θ)[W (dmaximin(Y ), θ)] = sup
d∈Dn

inf
θ∈Θ

Em(θ)[W (d(Y ), θ)].

Theorem 2. Suppose that there exists θ ∈ Θ such that U(θ) ≤ 0. If

inf
θ∈Θ

W (0, θ) = inf
θ∈Θ:U(θ)≤0

W (0, θ), (3.4)

then the no-data rule dno-data(y) := 0 is maximin optimal. The maximin value is

inf
θ∈Θ

W (0, θ).

Proof. See Appendix A.2.

This result can be seen as follows. When U(θ) ≤ 0, it is optimal to preserve the status quo;
substituting in for this response, we find that infθ∈Θ Em(θ)[W (d(Y ), θ)] ≤ infθ∈Θ,U(θ)≤0W (0, θ) for
any rule d ∈ Dn. Under condition (3.4), this upper bound is attained by dno-data.

Running Example—Continued: Theorem 2 applies to the running example. In particular,
the example’s maximin welfare equals 0 and is achieved by never assigning the new policy. □

A similar result was shown by Manski (2004) for testing an innovation with point-identified
welfare contrast (a result that we generalize6), and the concern can be traced back at least to Savage
(1951). There is a discussion of whether such “ultrapessimism” occurs, in a technical sense, more
generically with maximin utility versus minimax regret (Parmigiani, 1992; Sadler, 2015). However,
a string of more optimistic results regarding MMR (Canner, 1970; Stoye, 2009a, 2012b; Tetenov,
2012; Yata, 2021) suggests that, with state spaces that describe real-world decision problems, the

6In Manski’s (2004) example, W (0, θ) does not depend on θ, so that condition (3.4) is trivially satisfied.
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concern is more salient for maximin. In particular, a result like this is expected whenever there
exists a “uniformly awful” parameter value.7

3.3 Minimax Regret Admits Many Solutions

In view of our results so far, it seems natural to consider the minimax regret optimality criterion.
Indeed, some point-identified treatment choice problems admit nonrandomized, essentially unique
MMR optimal rules. Unfortunately, this extends to treatment choice with partial identification
only in special cases. To make this point, we consider a relatively simple (though rich enough to
cover our applications) class of problems where finite-sample minimax optimal results are available.
Within this class, we show that, if the identified set for the welfare contrast is sufficiently large
relative to sampling error, then (i) we can find infinitely many MMR optimal decision rules, all of
which randomize and (ii) under weak additional conditions, all MMR rules that depend on data
through a linear index must be randomized.

The expected regret of a decision rule d ∈ Dn in state θ is its expected welfare loss compared to
the oracle rule:

R(d, θ) := sup
a∈[0,1]

W (a, θ)− Em(θ)[W (d(Y ), θ)]

= max{W (0, θ),W (1, θ)} − Em(θ)[W (d(Y ), θ)]

= U(θ)
{
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

}
. (3.5)

Definition 4. A rule d∗ ∈ Dn is minimax regret (MMR) optimal if

sup
θ∈Θ

R(d∗, θ) = inf
d∈Dn

sup
θ∈Θ

R(d, θ). (3.6)

Solving minimax regret problems is often hard. Algorithms exist for certain cases (Yu and Kouvelis,
1995; Chamberlain, 2000), but we are not aware of a general purpose algorithm. In important, recent
work, Yata (2021) characterizes MMR optimal rules for a large class of binary action problems. He
imposes the following restrictions on the parameter space and welfare function.

Assumption 1. (i) Θ is convex, centrosymmetric (i.e., θ ∈ Θ implies −θ ∈ Θ) and nonempty.
7Given that we next elaborate on multiplicity of MMR rules, a quick clarification: While the maximin rule may

be unique here, this is due to treating the status quo as known. In settings where “treatment 0” and “treatment 1”
are equally unknown ex ante, the typical result is that all decision rules are maximin.
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(ii) m(·) and U(·) are linear.

Running Example—Continued: Our example satisfies Assumption 1. In particular, the space
of C-Lipschitz functions, θ : Rd → R is convex as well as centrosymmetric, and the functions U(·)
and m(·) are linear in θ as they simply report the values of θ at points (x0, . . . , xn). □

Assumption 1 is based on the literature on minimax estimation and inference on a linear functional
in nonparametric problems (Donoho, 1994; Low, 1995; Armstrong and Kolesár, 2018). Under
Assumption 1, Yata (2021) shows existence of an MMR rule that depends on the data only
through (w∗)⊤Y , where the unit vector w∗ can be approximated by solving a sequence of tractable
optimization problems. When the identified set for the welfare contrast at µ = 0 := 0n×1 is large
enough, Yata’s (2021) MMR rule can be expressed as

d∗RT((w
∗)⊤Y ) := Φ

(
(w∗)⊤Y/σ̃) (3.7)

for some uniquely characterized σ̃ > 0. Moreover, it then has two important algebraic properties:

Em(θ)[d
∗
RT(Y )] = 1/2 when m(θ) = 0 (3.8)

and
sup
θ∈Θ

R(d∗RT, θ) = sup
θ∈Θ,m(θ)=0

R(d∗RT, θ). (3.9)

In words, these features are as follows: First, if the mean function m(·) equals zero, expected
exposure to the new policy is 1/2. Second, worst-case regret occurs precisely at this point. The
latter is due to careful calibration of the MMR decision rule, and one might conjecture that it
renders this rule unique. However, the following result establishes the contrary.

Theorem 3. Consider a treatment choice problem with payoff function (2.1) and statistical model
(2.3) that exhibits nontrivial partial identification in the sense of Definition 2. Suppose that
Assumption 1 holds and that there is a MMR optimal rule d∗ that depends on the data only through
(w∗)⊤Y and that satisfies (3.8) and (3.9). If there exists µ ∈M such that I(µ) > I(0) and I(0) is
large enough, then

(i) There are infinitely many MMR optimal rules.

(ii) Any MMR rule that depends on the data only through (w∗)⊤Y (and is weakly increasing in
this argument) must randomize for some data realizations.
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(iii) If I(µ) is differentiable at µ = 0, then no linear threshold rule, i.e., no rule of form 1{w⊤Y ≥
c} for some w ∈ Rn and c ∈ R ∪ {−∞,∞}, is MMR optimal.

Proof. See Appendix A.3.

To be clear, this finding applies if the problem is sufficiently far from point identification, with
an exact condition given in the proof.8 Close to point identification and under mild additional
assumptions, Yata (2021) shows MMR optimality of a linear threshold rule.

Part (i) of Theorem 3 is established constructively: We show that, whenever d∗RT is MMR
optimal, then so is the piecewise linear rule

d∗linear((w
∗)⊤Y ) :=


0, (w∗)⊤Y < −ρ∗,
(w∗)⊤Y+ρ∗

2ρ∗
, −ρ∗ ≤ (w∗)⊤Y ≤ ρ∗,

1, (w∗)⊤Y > ρ∗,

(3.10)

where ρ∗ > 0 is characterized in Appendix A.3, Equation (A.19). This implies existence of infinitely
many MMR rules because the set of such rules is closed under convex combination.

Next, if the identified set is large enough for given Σ (or as Σ vanishes for given identified set),
all of the above rules randomize for some data realizations. A natural question to ask is whether
this feature is shared by all MMR rules. Parts (ii) and (iii) give qualified affirmative answers: If we
focus on decision rules that increase in (w∗)⊤Y and if I(0) is large enough, then randomization is
necessary for MMR optimality; if bounds are furthermore differentiable in reduced-form parameters
at 0, randomization is necessary for any MMR rule that depends on a linear index of the data.9 In
particular, the threshold rule

d∗0((w
∗)⊤Y ) = 1{(w∗)⊤Y ≥ 0} (3.11)

is not MMR optimal.

Running Example—Continued: Theorem 3 applies to our running example. We next improve
on this observation by providing explicit MMR optimal rules for the example. Broadly speaking,

8The relevant threshold will always be crossed as (other things equal) Σ vanishes. To the extent that small Σ
models large sample size, multiplicity therefore becomes relevant for any partially identified DGP as the sample
becomes large. Note, however, that the decision problems considered here give rise to stable asymptotic experiments
only if the extent of partial identification also vanishes, and so these limit experiments may fall into either regime.

9The class of nonrandomized but otherwise unrestricted rules is not interestingly different from the class of all
rules because high decimal places of Y1 can be used to approximate randomization. Similarly, the differentiability
condition is needed to preclude that some component of Y can effectively be used as randomization device.
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these are characterized by a weighting of studentized signals that resembles a triangular kernel. □

Proposition 1. In the running example, the following statements hold true.

(i) If
C ∥x1 − x0∥ <

√
π/2 · σ1, (3.12)

then the following decision rule is uniquely (up to almost sure agreement) MMR optimal:

dm∗
0

:= 1{w⊤
m∗

0
Y ≥ 0},

w⊤
m∗

0
:=

(
1,

max{m∗
0 − C ∥x2 − x0∥ , 0}/σ2

2

(m∗
0 − C ∥x1 − x0∥)/σ2

1

, . . . ,
max{m∗

0 − C ∥xn − x0∥ , 0}/σ2
n

(m∗
0 − C ∥x1 − x0∥)/σ2

1

)
,

where m∗
0 > C ∥xi − x0∥ solves a simple fixed point problem ( (B.12) in Online Appendix B.2).

(ii) If
C ∥x1 − x0∥ =

√
π/2 · σ1,

then d∗ := 1{(1, 0, . . . , 0)⊤Y ≥ 0} is MMR optimal.

(iii) If
C ∥x1 − x0∥ >

√
π/2 · σ1, (3.13)

then the rule d∗RT(·) defined in (3.7) with

σ̃ =

√
2C2 ∥x1 − x0∥2 /π − σ2

1, w∗ = (1, 0, . . . , 0)⊤ (3.14)

is MMR optimal. So is the rule d∗linear as defined in (3.10), where ρ∗ > 0 is uniquely defined
by ρ∗ = C ∥x1 − x0∥ (1− 2Φ (ρ∗/σ1)), as well as all convex combinations of these rules.

(iv) If Equation (3.13) holds and the nearest neighbor is unique (i.e., ∥x1 − x0∥ < ∥x2 − x0∥), no
linear threshold rule is MMR optimal.

Proof. See Online Appendix B.2.

Remark 3. All decision rules above converge to the one from case (ii) as C∥x1 − x0∥ →
√
π/2 · σ1.

Remark 4. This solution relates to the literature as follows. The problem is within the framework
considered by Yata (2021), and his analysis applies; in particular, our linear index differs from
his w∗ only by a more explicit characterization. The alternative solutions in (iii), the uniqueness
statement, and part (iv) are new. Ishihara and Kitagawa (2021) numerically find a solution within
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Figure 1: Panel a): Visualization of rules (3.7) and (3.10) in the running example with estimates
from two countries. (Setting x0 = 0 yields x1 = −7.5, σ1 = 3.9, x2 = 7.9, σ2 = 2.4. We set C = 2.5.)
Panel b): Difference between rules as a function of the nearest neighbor’s outcome.

the class of symmetric threshold rules (i.e., rules of form 1{w⊤Y ≥ 0}). This in principle recovers
the global solution if C ∥x1 − x0∥ ≤

√
π/2 · σ1 but will exclude all globally MMR optimal decision

rules otherwise. That said, Ishihara and Kitagawa’s (2021) solution approach applies considerably
more generally.

Remark 5. If µ is exogenous and known, then the decision rule d∗known µ(µ) := max{min{I(µ)/(I(µ)−
I(µ)), 1}, 0} uniquely attains MMR (Manski, 2007b). Only our new rule d∗linear converges to d∗known µ

in certain special cases. Similarly, Ishihara and Kitagawa (2021, Section 3.3) discuss that an
analogous convergence fails for any MMR rule that they propose. This may appear puzzling;
however, any presumption that MMR rules “should” converge to such limits delicately depends on
how one conceives the limit of the decision problem. Hence, it is not clear that we observe failure
of any convergence that “should” have occurred.

We conclude that different MMR rules can lead to rather different policy actions for the same
data. This difference is illustrated in Figure 1 for parameter values calibrated to Ishihara and
Kitagawa’s (2021) empirical example. How serious a challenge it is depends on one’s view. If one
truly thinks of MMR as encoding a decision maker’s complete preferences, and hence of competing
optimal rules as mutually indifferent, it is not much of a concern. However, it may make it harder
to communicate MMR-based decisions to policy makers. In addition, the next section’s results will
show that one may plausibly have preferences among the different MMR rules.
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4 Opportunities

In view of the preceding findings, we propose two different avenues for research: the judicious
profiling out of parameters when evaluating risk functions, which we hope mitigates the thrust of
some of the above results; and refinements of MMR, specifically toward least randomizing MMR,
which gives rise to a unique solution in our setting.

4.1 Profiled Risk

Profiling out some parameters of expected welfare or regret may yield interesting insights. Beyond
allowing to better visualize risk profiles of decision rules, it may render them comparable and may
even exclude some of them as (in a redefined sense) inadmissible. We illustrate this idea by exploring
a profiled expected regret criterion. While we could profile out any known function h(m(θ)), we
simplify exposition by restricting attention to linear indices. Thus, for a vector w ∈ Rn\{0}, let

Γw :=
{
γ ∈ R : w⊤m(θ) = γ, θ ∈ Θ

}
be the image of the transformation θ 7→ w⊤m(θ). Then the worst-case expected regret of a rule d
can be expressed as

sup
θ∈Θ

R(d, θ) = sup
γ∈Γw

(
sup

θ∈Θ:w⊤m(θ)=γ

R(d, θ)

)
. (4.1)

That is, we split (3.5) into an inner optimization problem with fixed level set {w⊤m(θ) = γ} and an
outer optimization over γ. The value function of the inner problem may be of interest, thus define:

Definition 5 (w-Profiled Regret). The w-profiled regret function Rw : Dn × Γw → R is given by

Rw(d, γ) := sup
θ∈Θ:w⊤m(θ)=γ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)
, (4.2)

where Y ∼ N(m(θ),Σ).

In problems where MMR optimal rules depend on the data only through some linear combination
(w∗)⊤Y , it seems reasonable to set w equal to w∗. However, there could be other vectors w of interest,
as we illustrate when extrapolating Local Average Treatment effects in Section 5.1.

Remark 6 (Not all decision rules are admissible with respect to w-profiled regret). One could say
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that a decision rule d is w-profiled regret admissible if there is no other rule d′ for which

Rw(d
′, γ) ≤ Rw(d, γ)

for every γ ∈ Γw, with strict inequality for some γ ∈ Γw. Even if Theorem 1 applies, a decision rule
can fail to be w-profiled-regret admissible for some w. Indeed, the no-data rule dcoin-flip(Y ) = 1/2

is w∗-profiled regret dominated by any MMR optimal rule in our running example.10

Remark 7 (Bayes rules with respect to w-profiled regret are Π∗-minimax under some conditions).
Consider any decision rule that minimizes

inf
d∈Dn

∫
Γw

Rw(d, γ)dπ
∗(γ), (4.3)

the weighted average of w-profiled regret for some prior π∗ over Γw. If π∗ has full support and profiled
regret is continuous in γ (for any d), then any solution to (4.3) is w-profiled-regret admissible; see
Ferguson (1967, Theorem 3, Section 2, p. 62) and Berger (1985, Theorem 9, Section 4, p. 254).

We next provide sufficient conditions under which decision rules that solve (4.3) can be
interpreted as Π∗-minimax decision rules in the sense of Berger (1985, Definition 13, p. 216),
where Π∗ is a class of priors over Θ.11 Let Dw denote the class of decision rules that depend on the
data only through w⊤Y ∼ N(w⊤m(θ), w⊤Σw). Consider the Π∗-minimax problem

inf
d∈Dw

(
sup
π∈Π∗

∫
Θ

R(d, θ)dπ(θ)

)
. (4.4)

Let Π∗ collect all priors over Θ for which w⊤m(θ) ∼ π∗, where π∗ is the prior over Γw used in
(4.3). This class of priors has recently been advocated by Giacomini and Kitagawa (2021). Their
Theorem 2 establishes that, for any d ∈ Dw,

sup
π∈Π∗

∫
Θ

R(d, θ)dπ(θ) =

∫
Γw

Rw(d, γ)dπ
∗(γ). (4.5)

Thus, the problem in (4.4) is equivalent to minimizing average w-profiled regret over decision rules
that depend on the data only through w⊤Y . In contrast, we next show that decision rules minimizing
average w-profiled regret cannot in general be computed by minimizing posterior regret.

Remark 8 (Bayes’ rules with respect to w-profiled regret do not in general minimize Π∗-posterior
10Simple algebra shows that that rule’s profiled regret is minimized at γ = 0, where it coincides with the maximized

regret of any MMR optimal rule. This dominance can also be verified if C ∥x1 − x0∥ ≤
√

π/2 · σ1. See Figure 2(a).
11To avoid notational conflict, we write Π∗-minimax instead of the more common Γ-minimax.
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expected loss). Consider the loss function

L(a, θ) := U(θ)[1{U(θ) ≥ 0} − a]

and note that R(d, θ) = Em(θ)[L(d, θ)]. An alternative to Π∗-minimax decision rules are rules
that minimize the worst-case posterior expected loss; see Berger (1985, Definition 10, p. 205) and
Giacomini, Kitagawa, and Read (2021, Equation 2.11). To illustrate the difference, restrict attention
to rules that depend on the data through w⊤Y . Then Π∗-posterior expected loss minimization solves

inf
a∈[0,1]

sup
π∈Π∗

Eπ[L(a, θ) | w⊤Y ]. (4.6)

Theorem 2 in Giacomini and Kitagawa (2021) can be used to show that

sup
π∈Π∗

Eπ[L(a, θ) | w⊤Y ] =

∫
Γw

(
sup

θ∈Θ:w⊤m(θ)=γ

L(a, θ)

)
dπ∗(γ | w⊤Y ). (4.7)

Thus, the criterion in (4.6) is analogous to the one suggested by Christensen et al. (2022). One can
easily construct examples in which these criteria disagree; we provide one after Figure 2. Indeed,
recall that in terminology from axiomatic decision theory, Equation (4.7) uses full Bayesian updating
of multiple prior preferences. This model is known to give rise to dynamically inconsistent behavior,
meaning that a decision maker’s preferred action after observing the data may not be what her
preferred ex-ante decision rule recommends for that data realization.12

Running Example—Continued: Recall that, for some parameter values, there is an MMR rule
depending on the data only through Y1. Thus, consider w∗-profiled regret for w∗ = (1, 0, . . . , 0)⊤.
Using (4.2), the w∗-profiled regret function equals

Rw∗(d, γ) = sup
(µ0,µ1,...,µn)⊤∈Rn+1:µ1=γ,µ0∈I(µ),µ∈M

µ0 (1{µ0 ≥ 0} − Eµ[d(Y )]) ,

and we can easily verify that Γw∗ = R. □

For the same parameters used in Figure 1, Figure 2(a) depicts w∗-profiled regret over the range
γ ∈ [−30, 30] for four decision rules. The blue (solid) line is d∗linear (see Equation (3.10)); the red
(dotted) line is d∗RT (see Equation (3.7)); the black (bimodal, solid) line is the symmetric threshold

12See Hanany and Klibanoff (2007) for a detailed explanation and further references. To be clear, our point is that
the criteria do not in general agree, not that this makes one of them better.
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rule d∗0(Y ) = 1{Y1 ≥ 0}; and the green (dashed) line is dcoin-flip = 1/2.13

An immediate use of Figure 2(a) is to compare decision rules in terms of their worst-case regret.
For example, consistent with Theorem 3-(ii), d∗0 is not MMR optimal. At the same time, d∗0 optimizes
worst-case posterior expected loss under a symmetric prior on θ, providing the example alluded to in
Remark 8 and illustrating that the current setting is not among the special cases in which minimax
regret is dynamically consistent. For the specific parameter values used here, we can furthermore
show that d∗0 is minimax regret optimal among linear threshold rules; thus, the black line also
illustrates the minimax regret efficiency loss from restricting attention to linear threshold rules.

Figure 2(a) also reveals interesting differences among MMR optimal rules. In particular, d∗linear

has smaller w∗-profiled regret than d∗RT virtually everywhere (though algebra shows that this
dominance does not hold for small nonzero γ). Finally, Figure 2(a) illustrates that, as remarked
earlier, dcoin-flip is w∗-profiled regret inadmissible in this example. We hope that future research will
yield more powerful results on profiled admissibility.

-30 -20 -10 0 10 20 30

0

2

4

6

8

10

12

(a) w∗-profiled regret of four decision rules (b) 1{Y1 > 0} v.s. 1{Y1 > 2.94}.

Figure 2: w∗-profiled regret in the running example; parameter values are as in Figure 1.

We close with three brief remarks about profiled regret. First, the considerable difference
between profiled regret functions in Figure 2(a) continues beyond the figure. Indeed, the ratio
Rw∗(d∗linear, γ)/Rw∗(d∗RT, γ) decays to zero at exponential rate as γ → ±∞.

Second, consider a symmetric, uniform two-point prior on γ supported at the two points
that maximize the black (solid) line in Figure 2(a). Among nonrandomized rules, the threshold
rule d∗0(Y ) = 1{Y1 > 0} solves the corresponding Π∗-posterior loss minimization problem (4.6).
However, d∗0 cannot solve the corresponding Π∗-minimax problem (4.4), even when we consider only

13Appendix B.3.1 presents algebraic and computational details that underlie this figure.
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nonrandomized threshold decision rules. This is because, as visualized in Figure 2(b), the threshold
rule 1{Y1 > 2.94} has smaller average w∗-profiled regret with respect to this prior.

Third, computation of profiled regret can frequently be simplified. Algebra shows that Rw(d, γ)

equals the maximum between

k̄+w (γ) := sup
θ∈Θ

U(θ)(1− Em(θ)[d(Y )]) s.t. w⊤m(θ) = γ, U(θ) ≥ 0, (4.8)

and
k̄−w (γ) := sup

θ∈Θ
−U(θ)Em(θ)[d(Y )] s.t. w⊤m(θ) = γ, U(θ) ≤ 0. (4.9)

In principle, these are the value functions of two infinite-dimensional, nonlinear optimization
problems. However, they can be recast as finite dimensional. For example, k̄+w (γ) equals

I
+

w(γ) := sup
µ∈M

I(µ)(1− Eµ[d(Y )])) s.t. w⊤µ = γ, I(µ) ≥ 0. (4.10)

This problem has a scalar choice variable, one linear equality constraint, and one potentially
nonlinear inequality constraint. The bottleneck is evaluation of I(µ). The running example admits
a closed-form solution for I(µ), so that evaluating (4.10) is easy.

More generally, the computational cost of evaluating (4.10) can be reduced by imposing more
structure on the parameter space Θ. For instance, when Θ is convex, the set M is convex as well;
the optimization problem is then over a convex subset of Rn. Moreover, if m(·) is linear and U(·)
is concave, the function I(µ) can be shown to be concave. This means that under Assumption 1,
the optimization problem in (4.10) is convex.

4.2 Least Randomizing MMR Optimal Rules

We next argue that further refining the MMR criterion presents an interesting research opportunity
and may even lead to unique recommendations. To this purpose, we propose consideration of,
and characterize, the least randomizing MMR rule. Our main motivation is that, despite the wide
adoption of randomized treatment allocations in economics and the social sciences, policy makers
might shy away from exposing only a fraction of a population to the new policy. Thus, we attempt
to recommend actions a ∈ (0, 1) as infrequently as possible.14

14A different approach to deal with multiplicity of MMR optimal rules would be to directly build attitude to
randomization into the welfare or risk functions. For example, consider the mean square regret criterion proposed
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To formalize this, observe that all of d∗RT, d∗linear, and d∗limit can be considered smoothed versions
of d∗0 in a sense that we now make precise and that resembles the progression from Manski (1975)
to Horowitz (1992). Let F : R → [0, 1] be a c.d.f. and consider a decision rule of form F ◦ w∗ :=

F ((w∗)⊤Y ) ∈ Dn; that is, the step function d∗0 was smoothed into a c.d.f. We will restrict attention
to c.d.f.’s that are symmetric (i.e., F (−x) = 1− F (x)) and unimodal (i.e., F (·) is convex for x ≤ 0

and concave otherwise). Let F be the set of all such c.d.f’s and let

D̃n := {F ◦ w∗ ∈ Dn : F ∈ F}.

Note that each rule F ◦ w∗ ∈ D̃n depends on the data only via (w∗)⊤Y and is nondecreasing in
(w∗)⊤Y . Moreover, for each F ◦w∗ ∈ D̃n, the interval on which treatment assignment is randomized
equals (up to closure)

V (F ◦ w∗) :=
(
sup
{
x ∈ R : F (x) = 0

}
, inf

{
x ∈ R : F (x) = 1

})
. (4.11)

All MMR decision rules considered in this paper are in D̃n. We next show that d∗linear is least
randomizing among them and among all other MMR decision rules that might exist in this class.

Theorem 4. Suppose all conditions of Theorem 3 hold. If F ◦ w∗ ∈ D̃n is MMR optimal, then
V (d∗linear ◦ w∗) ⊆ V (F ◦ w∗), with equality if and only if F = d∗linear.

Proof. See Appendix A.4.

In words, any symmetric, weakly increasing and unimodal MMR optimal rule that depends on
data only via (w∗)⊤Y must have a randomization area that is wider than that of d∗linear, strictly so
if it is a meaningfully distinct rule. Thus, the least randomizing criterion provides a pragmatic and
unique refinement among the set of known MMR optimal rules.

To establish Theorem 4, we first show that for any rule F ◦ w∗ ∈ D̃n, its expected regret at
any parameter θ for which (w∗)⊤m(θ) = 0 equals the MMR value of the problem. If F ◦ w∗ ∈ D̃n

is MMR optimal, its expected regret must therefore be maximized at (w∗)⊤m(θ) = 0. For any
symmetric and unimodal c.d.f. F with V (d∗linear ◦ w∗) ⊈ V (F ◦ w∗), we can show that a necessary
condition for this maximization fails.

Running Example—Continued: Recall that, applied to the running example and for C large

in Kitagawa et al. (2022). In a stylized example of a one-dimensional signal, Theorem 3.1 in Kitagawa et al. (2023)
implies, in general, a unique minimax-optimal rule based on mean square regret.
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enough, d∗linear can be expressed as

d∗linear(Y1) :=


0, Y1 < −ρ∗,
Y1+ρ∗

2ρ∗
, −ρ∗ ≤ Y1 ≤ ρ∗,

1, Y1 > ρ∗,

(4.12)

where ρ∗ ∈ (0, C ∥x1 − x0∥) is uniquely defined by

ρ∗ = C ∥x1 − x0∥ (1− 2Φ (ρ∗/σ1)).

Of note, d∗linear only randomizes when |Y1| < ρ∗. This is of interest because, whenever this happens,
the natural plug-in estimator of the identified set for µ0 given Y1, i.e. the interval

[ Y1 − C ∥x1 − x0∥ , Y1 + C ∥x1 − x0∥ ] , (4.13)

contains 0. Conversely, d∗linear(Y1) always (never) implements the new policy when (4.13) is to the
right (left) of zero. In this sense, the estimated identified set is explicitly used for decision making.
In contrast, d∗RT always randomizes the policy recommendation, although for large Y1 the fraction
of population assigned to treatment will be large.

It would be interesting to compare d∗linear(Y1) to a plug-in rule based on an estimated version of
I(µ).15 In the example, a natural such estimator would be [Î , Î], where

Î = min
i=1,...,n

{µ̂i + C ∥xi − x0∥} , Î = max
i=1,...,n

{µ̂i − C ∥xi − x0∥} ,

and (µ̂1, . . . , µ̂n) is a constrained (to M) maximum likelihood estimator. Based on the estimated
identified set [Î , Î], a natural plug-in rule is then

dplug-in(Y ) :=


0, Î < 0,

Î

Î−Î
, otherwise,

1, Î > 0.

(4.14)

In Appendix B.3.2, we plot and compare the w∗-profiled regrets of dplug-in and other rules, including
15Christensen et al. (2022) formally compare their proposed rule to “as-if” rules. However, Bayes optimal rules

with respect to w−profiled regret generally disagree with those in Christensen et al. (2022) (see Remark 8), so their
findings do not apply here.
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d∗linear and d∗RT. Although dplug-in is not MMR optimal, its worst-case regret is only slightly larger
than the MMR value, and its profiled regret is a bell-shaped curve similar to that of d∗linear. □

5 Further Applications

5.1 Extrapolating Local Average Treatment Effects

We next apply our analysis to extrapolation of Local Average Treatment Effects (Mogstad et al.,
2018; Mogstad and Torgovitsky, 2018). Let Z ∈ {0, 1} be a binary instrument, D ∈ {0, 1} a binary
treatment assignment, and (Y (1), Y (0)) potential outcomes under treatment and control. As usual,
the observed outcome is Y = DY (1) + (1−D)Y (0). To simplify exposition, we assume that there
are no covariates and that Y (1), Y (0) ∈ {0, 1}. Following Heckman and Vytlacil (1999, 2005),16

let p(z) := P{D = 1 | Z = z} be the propensity score and write D = 1{V ≤ p(Z)}, where
(V | Z = z) ∼ Unif[0, 1]. The parameter space Θ contains all tuples θ := (p(1), p(0),MTE(·)),
where p(1) ∈ [0, 1], p(0) ∈ [0, 1], p(1) ≥ p(0), and MTE(·) is the marginal treatment effect function

MTE(v) := E[Y (1)− Y (0) | V = v].

The policy maker observes (
m̂1

m̂2

)
∼ N

((
m1(θ)

m2(θ)

)
,Σ

)
, (5.1)

where

m1(θ) := E[Y | Z = 1]− E[Y | Z = 0] =

∫ p(1)

p(0)

MTE(v)dv

m2(θ) := E[D | Z = 1]− E[D | Z = 0] = p(1)− p(0)

are the population reduced-form and first-stage coefficients and Σ is positive definite. We assume
that the policy of interest would expand the complier subpopulation through an additive shift of
size α > 0 in the propensity score. Mogstad et al. (2018) show that the payoff relevant parameter
then is the “policy-relevant treatment effect” (Heckman and Vytlacil, 2005)

PRTE(α) = E[Y (1)− Y (0) | V ∈ (p(0), p(1) + α]].

16See, for example, Assumption I and Equation (2) in Mogstad and Torgovitsky (2018). Also see Imbens and
Angrist (1994) for additional references.
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If we normalize W (0, θ) = 0, the welfare contrast U(θ) is equal to PRTE(α) and can be written as

U(θ) := PRTE(α) =
m1(θ)

α +m2(θ)
+

1

α +m2(θ)

∫ p(1)+α

p(1)

MTE(v)dv. (5.2)

Hence, the decision maker wants to find an optimal treatment policy given partial identification
of parameter (5.2) in model (5.1). In Online Appendix B.3.3, we verify that Theorem 1 applies.
Therefore, any decision rule is admissible in this example. For example, if the PRTE(α) were
the payoff relevant parameter, implementing a policy for large values of the IV estimator would be
admissible, as would be the approach of Christensen et al. (2022), who discuss the same application.

It would be an interesting exercise to report the w-profiled regret of decision rules. In the context
of this example, one might reasonably use

w = (1,−β0)⊤/
√

(1,−β0)Σ(1,−β0)⊤

for some β0 ∈ R. For motivation, note that the square of

(m1(θ)− β0m2(θ))/
√
(1,−β0)Σ(1,−β0)⊤

can be viewed as the population Anderson and Rubin (1949) statistic for the null hypothesis of β0.
Thus, the profiled regret function reports the worst-case regret as one keeps constant the population
analog of that statistic.

5.2 Decision-theoretic Breakdown Analysis

Consider a policy maker who uses quasi-experimental data but is worried about confounding. More
specifically, she assumes a constant treatment effect model and unconfoundedness given covariates
(X,W ), motivating the linear regression model

Y = γ0 + βlongD + γ⊤1 X + γ⊤2 W + e,

where Y is observed outcome, D is the binary treatment, and e is a projection residual. The
infeasible optimal treatment policy is 1{βlong ≥ 0}. However, W is unobserved, so that the policy
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maker can only estimate the “medium” regression

Y = π0 + βmedD + π⊤
1 X + u,

where u is a projection residual.17 In general, if there exists selection on unobservables (that is,
D is correlated with W ), then βlong is only partially identified. Specifically, Diegert et al. (2022,
Theorem 4) show that the identified set of βlong given βmed is

βlong ∈ [βmed − k, βmed + k],

where

k :=


√

var(Y ⊥D,X)
var(D⊥X)

r2DR2
D∼X

1−R2
D∼X−r2D

, if 0 ≤ rD <
√
1−R2

D∼X ,

∞, if rD ≥
√
1−R2

D∼X ,

and where var
(
Y ⊥D,X

)
is the variance of the residual from projecting Y onto (1, D,X), var

(
D⊥X

)
is the variance of the residual from projecting D onto (1, X), R2

D∼X is the R2 from projecting D onto
(1, X), and rD ≥ 0 is a user-specified sensitivity parameter that measures the relative importance
of selection on unobservables versus selection on observables.18

Diegert et al. (2022) use this result to ask: How strong does omitted variables bias have to be
to potentially overturn findings based on βmed? At population level, the answer is that this can
happen if |k| > |βmed|, a condition that can be related to primitive parameters through the above
display and for which Diegert et al. (2022) provide estimation and inference theory.

Suppose now that there is an estimator β̂med ∼ N(βmed, σ
2). Then our results apply upon letting

θ = (βlong, βmed)
⊤ ∈ R2, U(θ) = βlong and m(θ) = βmed. In particular, when k >

√
π
2
σ, there are

infinitely many MMR optimal rules, with the least randomizing one among known ones being

d∗linear(β̂med) :=


0, β̂med < −ρ∗,
β̂med+ρ∗

2ρ∗
, −ρ∗ ≤ β̂med ≤ ρ∗,

1, β̂med > ρ∗,

(5.3)

17We express all regressions as projections for alignment with the literature and because only projection algebra
is used. However, motivating 1{βlong ≥ 0} as optimal usually requires causal interpretation and therefore slightly
stronger assumptions on e; in other words, readers may want to think of the long regression as causal and the medium
one as best linear prediction. See Hansen (2022, Chapter 2), whose notation we also borrow, for a lucid discussion.

18In practice, var
(
Y ⊥D,X

)
, var

(
D⊥X

)
and R2

D∼X are unknown. However, as discussed in Section 2, we may
treat the joint distribution of {Y,D,X} as multivariate normal with known covariance matrix. As var

(
Y ⊥D,X

)
,

var
(
D⊥X

)
, and R2

D∼X are functions of the covariance matrix, it is then coherent to take them to be known as well.
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Figure 3: k̄ (solid) and k̃ (dashed) as a function of β̂med

where ρ∗ > 0 uniquely solves ρ∗ = k(1−2Φ(−ρ∗/σ)). When k ≤
√

π
2
σ, we know from Stoye (2012a)

that d∗0(β̂med) = 1{β̂med ≥ 0} is essentially uniquely MMR optimal.

These results motivate a complementary breakdown analysis guided by statistical decision
theory. For given β̂med > 0, we can ask: How large could k have to be so that the MMR optimality
criterion still supports assigning the new policy without any hedging?19 Due to its least randomizing
property, d∗linear implies the tightest possible answer to this question. Specifically, MMR supports
non-randomized policy assignment up to the “decision theoretic breakdown point”

k̄(β̂med) := sup{k > 0 : d∗(β̂med) = 1}

d∗(β̂med) :=

1{β̂med ≥ 0} if k ≤
√

π
2
σ

d∗linear(β̂med) if k >
√

π
2
σ
.

Figure 3 displays both breakdown points as functions of β̂med when σ = 1. It turns out that the
decision theoretic breakdown point tolerates more ambiguity; this difference is salient for smaller
values of β̂med and vanishes as β̂med diverges.

19Informal exploration of this question goes back at least to Stoye (2009b, see Table 3).
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6 Conclusion

In this paper, we used statistical decision theory to argue that treatment choice problems with partial
identification present important theoretical and practical challenges as well as interesting research
opportunities. For a large and empirically relevant class of such problems, we show that every
decision rule is admissible, that maximin welfare optimality criterion often select no-data decision
rules, and that there are infinitely many minimax regret optimal rules, all of which randomize
the policy action at least for some data realizations. These results stand in stark contrast with
treatment choice problems with point-identified welfare.

We also discuss concrete ideas for overcoming these issues. First, judicious profiling of regret
may help to visualize and summarize the risk function, suggest that some rules outperform others
by commonsensical standards, and potentially give rise to an informative admissibility criterion.
Second, we provide a decision rule that is least randomizing in a large class of MMR optimal rules
including all known ones. We illustrate our results in three applications that arise in applied work:
extrapolation of experimental estimates for policy adoption, policy-making with quasi-experimental
data when omitted variable bias is a concern, and extrapolation of Local Average Treatment Effects.

We believe there are many interesting research directions for future work. For example, it would
be worthwhile to investigate the profiled regret of different decision rules suggested in the recent
literature. We would also be interested to learn about other refinement criteria. Finally, it would
be interesting to investigate more in detail the properties of the “as if” or plug-in approach that
uses information from an estimated identified set for decision making.
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A Proofs of Main Results

A.1 Proof of Theorem 1

Suppose by contradiction that some rule d is dominated. Then there exists d′ such that

U(θ)Em(θ) [d
′(Y )] ≥ U(θ)Em(θ) [d(Y )] (A.1)

for all θ ∈ Θ.

Step 1: We first show that (A.1) must hold with equality for any θ ∈ m−1(S). Suppose not,
then there exists θ∗ ∈ m−1(S) such that

U(θ∗)Em(θ∗) [d
′(Y )] > U(θ∗)Em(θ∗) [d(Y )] , (A.2)

which implies that U(θ∗) ̸= 0. Without loss of generality, assume U(θ∗) > 0. Then

Em(θ∗) [d
′(Y )] > Em(θ∗) [d(Y )] .

Define µ∗ := m(θ∗). Since µ∗ ∈ S, there must exist θµ∗ , θ̃µ∗ ∈ Θ such that U(θµ∗) < 0, U(θ̃µ∗) > 0.
Therefore, (A.2) implies

U(θµ∗)Em(θµ∗ ) [d
′(Y )] < U(θµ∗)Em(θµ∗ ) [d(Y )] , (A.3)

contradicting (A.1). We conclude that

U(θ)Em(θ) [d
′(Y )] = U(θ)Em(θ) [d(Y )]

for any θ ∈ m−1(S).

Step 2: We next show that for any µ ∈ S, Eµ [d
′(Y )− d(Y )] = 0. Because of nontrivial partial

identification, for any µ ∈ S there exists θµ such that U(θµ) ̸= 0. Step 1 then implies that for any
µ ∈ S,

U(θµ)Eµ [d
′(Y )] = U(θµ)Eµ [d(Y )] .
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Since U(θµ) ̸= 0, the desired result follows.

Step 3: Consider now the family of distributions

Y ∼ N(µ,Σ), µ ∈ S.

We will show that this collection of distributions is complete (Casella and Berger, 2002, Definition
6.2.21). Define the vector µ̃ := Σ−1µ ranging over the set

S̃ := {µ̃ ∈ Rn | µ̃ = Σ−1µ, µ ∈ S}.

Note S̃ is open under Definition 2. Furthermore, the pdf pµ̃ of Y given µ̃ is of the form

pµ̃(Y ) = h(Y )C(µ̃) exp
[
µ̃⊤Y

]
.

Thus, the family of distributions for Y is complete by Casella and Berger (2002, Theorem 6.2.25).

Step 4: We use this completeness result to show that d′(y) − d(y) = 0 for almost all y ∈ Rn.
First, the definition of completeness readily implies this for all y ∈ Rn except for a set of realizations
that have zero probability under any N(µ,Σ) as µ ranges over S. By Skorohod (2012), the Gaussian
measure in Rn is absolute continuous with respect to Lebesgue measure. This step’s claim follows.

Conclusion: We find that Em(θ) [d
′(Y )] = Em(θ) [d(Y )] for all θ ∈ Θ, a contradiction.

A.2 Proof of Theorem 2

First, we can bound

sup
d∈Dn

inf
θ∈Θ

Em(θ) [W (d(Y ), θ)] = sup
d∈Dn

inf
θ∈Θ

[
W (0, θ) + U(θ)Em(θ) [d(Y )]

]
≤ sup

d∈Dn

inf
θ∈Θ:U(θ)≤0

[
W (0, θ) + U(θ)Em(θ) [d(Y )]

]
≤ inf

θ∈Θ:U(θ)≤0
W (0, θ),

using that Em(θ) [d(Y )] ≥ 0. To see that this bound is tight, write

inf
θ∈Θ

Em(θ) [W (dno-data, θ)] = inf
θ∈Θ

[
W (0, θ) + U(θ)Em(θ) [dno-data(Y )]

]
= inf

θ∈Θ
W (0, θ).

and recall that infθ∈ΘW (0, θ) = infθ∈Θ:U(θ)≤0W (0, θ) by assumption.
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A.3 Proof of Theorem 3

A.3.1 Proof of Part (i) of Theorem 3

Let R denote the minimax value of the policy maker’s decision problem:

R := inf
d∈Dn

sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)}
. (A.4)

Step 1 (Minimax Regret Value): We first show that, if Assumption 1 holds and there exists an
MMR optimal rule that depends on the data only through (w∗)⊤Y and satisfies Equations (3.8)
and (3.9), then

R = (1/2) · k̄w∗(0), (A.5)

where
k̄w∗(0) := sup

θ∈Θ
U(θ) s.t (w∗)⊤m(θ) = 0. (A.6)

Lemma B.1 in Appendix B shows that, under this step’s premise, Equation (3.8) implies

(1/2) · k̄w∗(0) ≤ R.

Since d∗ is MMR optimal, Equations (3.8)-(3.9) and centrosymmetry of Θ imply

R = sup
θ∈Θ,m(θ)=0

R(d∗, θ) = sup
θ∈Θ,m(θ)=0

U(θ)

(
1{U(θ) ≥ 0} − 1

2

)
=
I(0)

2
.

By definition, I(0) ≤ k̄w∗(0). Thus, we have

(1/2) · k̄w∗(0) ≤ R = (1/2) · I(0) ≤ (1/2) · k̄w∗(0).

Step 2 (Upper bound for the worst-case regret of decision rules that depend on the data only
through (w∗)⊤Y ): We obtain an upper bound for the worst-case regret of such rules by linearizing
the parameter space. We introduce some notation to formalize this step.

Let Γw∗ :=
{
γ ∈ R|(w∗)⊤m(θ) = γ, θ ∈ Θ

}
be the image of the transformation θ 7→ (w∗)⊤m(θ).

We define the identified set for the welfare contrast U(θ) given γ ∈ Γw∗ as

ISUw∗(γ) := {u ∈ R | U(θ) = u, (w∗)⊤m(θ) = γ, θ ∈ Θ}. (A.7)
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Any decision rule that depends on the data only through (w∗)⊤Y can be identified with a
(measurable) function d from R to [0, 1]. For future reference, let D collect all such functions. The
worst-case expected regret of any d ∈ D can be expressed as

sup
θ∈Θ

(
U(θ)

(
1{U(θ) ≥ 0} − Eγ[d((w

∗)⊤Y )]
))

(A.8)

= sup
γ∈Γw∗

(
sup

θ∈Θ, (w∗)⊤m(θ)=γ

U(θ)
(
1{U(θ) ≥ 0} − Eγ[d((w

∗)⊤Y )]
))

= sup
γ∈Γw∗

(
sup

U∗∈ISUw∗ (γ)

U∗ (1{U∗ ≥ 0} − Eγ[d((w
∗)⊤Y )]

))
, (A.9)

where the expectation Eγ[·] is taken over (w∗)⊤Y ∼ N(γ, (w∗)⊤Σw∗). For γ ∈ Γw∗ , define

kw∗(γ) := inf ISUw∗(γ) = inf{U(θ) : (w∗)⊤m(θ) = γ, θ ∈ Θ} (A.10)

k̄w∗(γ) := sup ISUw∗(γ) = sup{U(θ) : (w∗)⊤m(θ) = γ, θ ∈ Θ}. (A.11)

By centrosymmetry of Θ and linearity of U(θ) and m(θ), we have that

inf{U(θ) : (w∗)⊤m(θ) = γ, θ ∈ Θ} = − sup{U(θ) : (w∗)⊤m(θ) = −γ, θ ∈ Θ}

=⇒ kw∗(γ) = −k̄w∗(−γ)

and therefore that ISUw∗(γ) ⊆
[
−k̄w∗(−γ), k̄w∗(γ)

]
,∀γ ∈ Γw∗ . Equation (A.9) then implies that

(A.8) is bounded above by

sup
γ∈Γw∗

 sup
U∗∈[−k̄w∗ (−γ), k̄w∗ (γ)]

U∗ (1{U∗ ≥ 0} − Eγ[d((w
∗)⊤Y )]

) . (A.12)

Lemma B.2 shows that, under Assumption 1, k̄w∗(γ) is concave (and therefore −k̄w∗(−γ) is
convex). Furthermore, Lemma B.3 shows that, under Assumption 1, the superdifferential of the
function k̄w∗(·) at γ = 0,

∂k̄w∗(0) := {s ∈ R | k̄w∗(γ) ≤ k̄w∗(0) + sγ, ∀γ ∈ Γw∗}, (A.13)

(see p. 214-215 in Rockafellar (1997)) is nonempty, bounded, and closed.

Let sw∗(0) be the largest element of ∂k̄w∗(0) and suppose without loss of generality that sw∗(0) ≥
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0. Step 3 in the proof of Lemma B.3 established that Γw∗ is symmetric around 0. The definition of
superdifferential then gives

sw∗(0)γ − k̄w∗(0) ≤ −k̄w∗(−γ) ∀γ ∈ Γw∗ . (A.14)

It follows that
[−k̄w∗(−γ) , k̄w∗(γ)] ⊆ [sw∗(0)γ − k̄w∗(0) , sw∗(0)γ + k̄w∗(0)].

Substituting into (A.12) then implies that (A.8) is further bounded above by

sup
γ∈Γw∗

 sup
U∗∈[sw∗ (0)γ−k̄w∗ (0) , sw∗ (0)γ+k̄w∗ (0)]

U∗ (1{U∗ ≥ 0} − Eγ[d((w
∗)⊤Y )]

) . (A.15)

We note that the choice set for U∗ in this expression is linear in γ.

Step 3 (“Linear Embedding” Minimax Regret Problem): The previous step and the fact that
Γw∗ ⊆ R imply that (A.8) is bounded above by

inf
d∈D

sup
γ∈R

 sup
U∗∈[sw∗ (0)γ−k̄w∗ (0) , sw∗ (0)γ+k̄w∗ (0)]

U∗ (1{U∗ ≥ 0} − Eγ[d (γ̂)])

 , (A.16)

where
γ̂ ∼ N

(
γ , (w∗)⊤Σw∗) , γ ∈ R.

Lemma B.4 in Appendix B shows that if sw∗(0) > 0 and k̄w∗(0) >
√

π
2

√
(w∗)⊤Σw∗ · sw∗(0), then

(A.16) equals k̄w∗(0)/2 and there are infinitely many rules that give such value. In particular, a
solution is given by any convex combination of the following rules:

d∗RT(γ̂) := Φ

γ̂/√2 · k̄w∗(0)2

π · sw∗(0)2
− (w∗)⊤Σw∗

 (A.17)

d∗linear(γ̂) :=


0, γ̂ < −ρ∗,
γ̂+ρ∗

2ρ∗
, −ρ∗ ≤ γ̂ ≤ ρ∗,

1, γ̂ > ρ∗,

(A.18)
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where ρ∗ ∈
(
0, k̄w∗ (0)

sw∗ (0)

)
is the unique solution to

(
sw∗(0)

2 · k̄w∗(0)

)
ρ∗ − 1

2
+ Φ

(
− ρ∗√

(w∗)⊤Σw∗

)
= 0. (A.19)

Step 4 (Rules that solve the “Linear Embedding” minimax regret problem also solve the original
problem). If sw∗(0) > 0, k̄w∗(0) >

√
π
2

√
(w∗)⊤Σw∗ ·sw∗(0), and d⋆ ∈ D solves the linear embedding

problem, then
d⋆ ◦ w∗(Y ) := d⋆((w∗)⊤Y ) ∈ Dn (A.20)

is MMR optimal in the original decision problem (A.4).

This is because Step 1 implies that

(1/2)k̄w∗(0) = R ≤ sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d

⋆((w∗)⊤Y )]
)}

and Step 2 implies that

sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d

⋆((w∗)⊤Y )]
)}

≤ sup
γ∈R

 sup
U∗∈[sw∗ (0)γ−k̄w∗ (0) , sw∗ (0)γ+k̄w∗ (0)]

U∗ (1{U∗ ≥ 0} − Eγ[d
⋆ (γ̂)]

)
=

k̄w∗(0)

2
,

where the last equality follows from Step 3. Consequently,

sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d

⋆((w∗)⊤Y )]
)}

=
k̄w∗(0)

2
.

Step 5: Finally, we show that the assumptions of Theorem 3 imply

sw∗(0) > 0

and
k̄w∗(0) >

√
π/2 ·

√
(w∗)⊤Σw∗ · sw∗(0).
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First, we show that sw∗(0) > 0. The definitions of I(·) and k̄w∗(·) imply

I(µ) ≤ k̄w∗((w∗)⊤µ), for all µ ∈M.

As sw∗(0) is a supergradient of k̄w∗(0),

k̄w∗((w∗)⊤µ) ≤ k̄w∗(0) + sw∗(0)((w∗)⊤µ), for all µ ∈M.

Step 1 showed that I(0) = k̄w∗(0). Hence, combining the above equations yields

I(µ) ≤ I(0) + sw∗(0)(w∗)⊤µ, for all µ ∈M. (A.21)

If sw∗(0) = 0, Equation (A.21) then implies I(µ) ≤ I(0) for all µ ∈M , contradicting the assumption
that there exists µ ∈M such that I(µ) > I(0).

Second, since Step 1 showed that I(0) = k̄w∗(0), then

k̄w∗(0) >
√
π/2 ·

√
(w∗)⊤Σw∗ · sw∗(0)

holds when I(0) is large enough, in particular whenever

I(0) >
√
π/2 ·

√
(w∗)⊤Σw∗ · sw∗(0).

Conclusion: Steps 1-5 imply there are infinitely many rules that solve the problem (A.4).

A.3.2 Proof of Part (ii) of Theorem 3

Consider any decision rule dm(·) that depends on the data only as nondecreasing function of w⊤Y

(for some w ̸= 0 that is not necessarily w∗) and such that dm(·) ∈ {0, 1} for all data realizations.
Then we must have dm(w

⊤Y ) = 1
{
w⊤Y ≥ c

}
for some −∞ ≤ c ≤ ∞. The worst-case expected
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regret of such a rule satifies

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[dm(Y )]

)
(A.22)

≥ sup
θ∈Θ:m(θ)=0

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[dm(Y )]

)
= max

{
−I(0)E0[dm(Y )], I(0)(1− E0[dm(Y )])

}
≥ I(0)/2, (A.23)

where we used that I(0) = −I(0) by centrosymmetry, and the last inequality is strict unless c = 0.
As I(0)/2 is the MMR value of the problem, d∗m(·) cannot be MMR optimal if c ̸= 0. For w = w∗,
substantial additional algebra that we relegate to Lemma B.8 extends the result to c = 0 (by
showing that a first-order condition cannot hold at (w∗)⊤Y = 0).

A.3.3 Proof of Part (iii) of Theorem 3

The preceding argument established the claim for rules of form 1{w⊤Y ≥ c}, where c ̸= 0. It
remains to consider symmetric threshold rules 1{w⊤Y ≥ 0}. To this end, bound the worst-case
expected regret of such rules as follows:

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[1{w⊤Y ≥ 0}]

)
≥ sup

θ∈Θ,m(θ)=µ,U(θ)≥0,µ∈M
U(θ)

(
1{U(θ) ≥ 0} − Eµ[1{w⊤Y ≥ 0}]

)
= sup

µ∈M,I(µ)>0

I(µ)
(
1− Eµ[1{w⊤Y ≥ 0}]

)
= sup

µ∈M,I(µ)>0

I(µ)Φ

(
− w⊤µ√

w⊤Σw

)
:= sup

µ∈M,I(µ)>0

gw(µ).

Note that gw(0) = I(0)/2 is the MMR value of the problem, implying that µ = 0 attains this
value under any symmetric threshold rule. For such a rule to be MMR optimal, µ = 0 must then
be a local constrained maximum point of gw(µ). Because M contains an open set including 0 by
Definition 2 and Assumption 1 and since we assumed differentiability of I(µ) at 0, this requires a
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first-order condition

∂gw(µ)

∂µj

|µ=0 =
1

2

∂I(0)

∂µj

− wj√
w⊤Σw

I(0)ϕ (0) = 0, j = 1 . . . n. (A.24)

To simplify expressions, change co-ordinates (if necessary) so that w∗ = (1, 0, . . . , 0)⊤. Because w∗

must fulfil (A.24), we have that ∂I(0)
∂µj

= 0 for j = 2, . . . , n. But this, in turn, means that (A.24)
requires w2 = . . . = wn = 0. Next, noting that w in a symmetric threshold rule is determined
only up to scale, we restrict attention to w1 ∈ {−1, 0, 1}. But if w∗ = (1, 0, . . . , 0) solves (A.24) for
j = 1, then −w∗ cannot solve it because the sign change does not affect the denominator dividing
w1. Finally, w = 0, i.e. never adopting treatment, is excluded by part (ii) (it is the same as setting
c = ∞ there) and is also easily seen directly to not be MMR optimal.

A.4 Proof of Theorem 4

Step 1: If F ◦ w∗ ∈ D̃n is MMR optimal, then V (d∗linear ◦ w∗) ⊆ V (F ◦ w∗).

To see this, pick any F ◦ w∗ ∈ D̃n that is MMR optimal. Then we can write

F ◦ w∗(Y ) = F ((w∗)⊤Y ) = F (γ̂),

where F ∈ F is a symmetric and unimodal c.d.f (thus weakly increasing as well), γ̂ := (w∗)⊤Y ∼
N(γ, σ2), with γ ∈ Γw∗ defined in Step 2 of the proof for Theorem 3(i), and σ2 = (w∗)⊤Σw∗. The
worst-case expected regret of rule F ◦ w∗ is

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[F ((w

∗)⊤Y )]
)
= sup

γ∈Γw∗ :k̄w∗ (γ)>0

k̄w∗(γ) (1− Eγ[F (γ̂)]) ,

where k̄∗w is defined in (A.11). Letting gF (γ) := k̄w∗(γ) (1− Eγ[F (γ̂)]). Since γ̂ ∼ N(γ, σ2), we may
further calculate (using integration by parts)

Eγ[F (γ̂)] =

∫
F (s)dΦ(

s− γ

σ
)

= Φ

(
s− γ

σ

)
F (s)|∞−∞ −

∫
Φ

(
s− γ

σ

)
dF (s)

= 1−
∫

Φ

(
s− γ

σ

)
dF (s).
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Therefore, gF (γ) = k̄w∗(γ)
∫
Φ( s−γ

σ
)dF (s). Note that F (−x) = 1 − F (x) for all x ∈ R; hence,∫

Φ( s
σ
)dF (s) = 1

2
and therefore gF (0) = k̄w∗ (0)

2
. By Step 1 for the proof of Theorem 3(i), k̄w∗ (0)

2
is

the MMR value of the problem. MMR optimality of F ◦ w∗ implies

0 ∈ arg sup
γ∈Γw∗ ,k̄w∗ (γ)>0

gF (γ).

By Lemma B.3, 0 is an interior point of {γ ∈ R : k̄w∗(γ) > 0, γ ∈ Γw∗}. Thus, let ∂gF (0) denote
the generalized gradient of gF (·) at 0.20 Then 0 ∈ ∂gF (0) is necessary for optimality. To show that
it fails, compute the generalized gradient as21

s̃w∗(0)

∫
Φ(
s

σ
)dF (s)− k̄w∗(0)

σ

∫
ϕ
( s
σ

)
dF (s)

=
s̃w∗(0)

2
− k̄w∗(0)

σ

∫
ϕ
( s
σ

)
dF (s),

where s̃w∗(0) is a supergradient of k̄w∗(γ) at γ = 0. Therefore, we conclude

s̃w∗(0)

2
− k̄w∗(0)

σ

∫
ϕ
( s
σ

)
dF (s) = 0 ⇐⇒

∫
ϕ
( s
σ

)
dF (s) =

s̃w∗(0)σ

2k̄w∗(0)

for some s̃w∗(0) > 0.

Next, d∗linear ∈ F can be verified to solve the linear embedding problem (A.16) (Lemma B.4). In
particular, evaluating g(1)linear(γ) at γ = 0, where glinear(γ) is defined in Lemma B.7 with k = k̄w∗ (0)

sw∗ (0)

and σ2 = (w∗)⊤Σw∗, one finds∫
ϕ
( s
σ

)
d(d∗linear(s)) =

∫ ρ∗

−ρ∗
ϕ
( s
σ

) 1

2ρ∗
ds =

sw∗(0)σ

2k̄w∗(0)
, (A.25)

where sw∗(0) > 0 is the largest supergradient of k̄w∗(γ) at γ = 0.

Since f is symmetric around 0, V (F ◦w∗) is as well. Write V (F ◦w∗) := (−aF , aF ) for some aF
and V (d∗linear ◦ w∗) := (−ρ∗, ρ∗). Suppose by contradiction that V (d∗linear ◦ w∗) ⊈ V (F ◦ w∗). Then

20The generalized gradient of g : R → R at x equals ∂g(x) := {ξ ∈ R : lim supy→x,t↓0
f(y+tv)−f(y)

t ≥ ξv,∀v ∈ R}.
See Clarke (1990, p. 27).

21We can verify, following the same steps in the proof for Lemma B.8, that conditions of Proposition 2.3.13 in
Clarke (1990) are satisfied, so that the chain rule can be applied.
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aF < ρ∗, but that would imply∫
ϕ(
s

σ
)dF (s) =

∫ aF

−aF

ϕ(
s

σ
)dF (s) >

sw∗(0)σ

2k̄w∗(0)
≥ s̃w∗(0)σ

2k̄w∗(0)
, (A.26)

where the first inequality follows by the assumption that dF (x) = 0 for all x /∈ (−aF , aF ) and F (x)
is symmetric and unimodal, and the second inequality follows as sw∗(0) is the largest supergradient
of k̄w∗(0). Thus, 0 /∈ ∂gF (0), a contradiction.

Step 2: Next, V (d∗linear ◦w∗) = V (F ◦w∗) if and only if F = d∗linear. The “if” direction is obvious.
To see “only if,” suppose by contradiction that there exists some F̃ ∈ F not equal to d∗linear but such
that V (d∗linear ◦ w∗) = V (F ◦ w∗) and F̃ ◦ w∗ is MMR optimal. Then∫

ϕ
( s
σ

)
dF̃ (s) =

∫ ρ∗

−ρ∗
ϕ
( s
σ

)
dF̃ (s) >

∫ ρ∗

−ρ∗
ϕ
( s
σ

) 1

2ρ∗
ds =

sw∗(0)σ

2k̄w∗(0)
≥ s̃w∗(0)σ

2k̄w∗(0)
,

where the first step uses V (d∗linear ◦ w∗) = V (F ◦ w∗), the second one that F̃ is symmetric and
unimodal, the third one uses (A.25), and the last one that sw∗(0) is the largest supergradient of
k̄w∗(0). Thus, F̃ ◦ w∗ cannot be MMR optimal, a contradiction.
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B Online Appendix

B.1 Lemmas for Theorem 3

Lemma B.1. Consider a treatment choice problem with payoff function (2.1) and statistical model
(2.3) that exhibits nontrivial partial identification in the sense of Definition 2. Suppose that
Assumption 1 holds and there exists an MMR optimal rule d∗ depending on the data only through
(w

∗
)⊤Y . If Equation (3.8) holds, then

R := sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[d

∗((w∗)⊤Y )]
)
≥ k̄w∗(0)

2
,

where
k̄w∗(0) := sup

θ∈Θ
U(θ) s.t (w∗)⊤m(θ) = 0.

Proof. Since the distribution of w∗⊤Y only depends on m(θ) through (w∗)⊤m(θ), we can write

R = sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − E(w∗)⊤m(θ)[d

∗((w∗)⊤Y )]
)

≥ sup
θ∈Θ:(w∗)⊤m(θ)=0

U(θ)
(
1{U(θ) ≥ 0} − E0[d

∗((w∗)⊤Y )]
)

(1)
= sup

θ∈Θ,(w∗)⊤m(θ)=0

U(θ)

(
1{U(θ) ≥ 0} − 1

2

)
=

1

2
max

{
sup

θ∈Θ:(w∗)⊤m(θ)=0,U(θ)≥0

U(θ) , sup
θ∈Θ:(w∗)⊤m(θ)=0,U(θ)≤0

−U(θ)

}
(2)
=

1

2
max

{
sup

θ∈Θ:(w∗)⊤m(θ)=0,U(θ)≥0

U(θ) , sup
θ∈Θ:(w∗)⊤m(θ)=0,U(−θ)≥0

U(−θ)

}
(3)
=

1

2
sup

θ∈Θ:(w∗)⊤m(θ)=0,

U(θ),

where (1) uses that E0[d
∗((w∗)⊤Y )] = 1/2 by (3.8), (2) uses linearity of U(·), and (3) uses

centrosymmetry of Θ and linearity of m(·) and U(·).

Lemma B.2. Suppose Assumption 1 holds. Then k̄w∗(γ) is concave in γ ∈ Γw∗ .

Proof. Fix any γ1, γ2 ∈ Γw∗ and ε > 0. By the definition of k̄w∗(γ1) and k̄w∗(γ2), there exist
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θγ1,ε, θγ2,ε ∈ Θ such that

(w∗)⊤m(θγ1,ε) = γ1, U(θγ1,ε) > k̄w∗(γ1)− ε,

(w∗)⊤m(θγ2,ε) = γ2, U(θγ2,ε) > k̄w∗(γ2)− ε,

By convexity of Θ, tθγ1,ε + (1− t)θγ2,ε ∈ Θ as well. Moreover, as m(·) is linear,

(w∗)⊤m (tθγ1,ε + (1− t)θγ2,ε) = t(w∗)⊤m(θγ1,ε) + (1− t)(w∗)⊤m(θγ2,ε)

= tγ1 + (1− t)γ2.

Next, for t ∈ [0, 1], let γ̃t := tγ1 + (1− t)γ2. Then

k̄w∗(γ̃t) = sup
(w∗)⊤m(θ)=tγ1+(1−t)γ2,θ∈Θ

U(θ)

≥ U(tθγ1,ε + (1− t)θγ2,ε)

= tU(θγ1,ε) + (1− t)U(θγ2,ε)

> t
(
k̄w∗(γ1)− ε

)
+ (1− t)

(
k̄w∗(γ2)− ε

)
= tk̄w∗(γ1) + (1− t)k̄w∗(γ2)− ε,

where the third relation follows from linearity of U(· ). This means that

k̄w∗(γ̃t) > tk̄w∗(γ1) + (1− t)k̄w∗(γ2)− ε,

for any ε > 0. We conclude that

k̄w∗(γ̃t) ≥ tk̄w∗(γ1) + (1− t)k̄w∗(γ2).

Lemma B.3. Consider a treatment choice problem with payoff function (2.1) and statistical model
(2.3) that exhibits nontrivial partial identification in the sense of Definition 2. If Assumption 1
holds, then the superdifferential of k̄w∗(γ) at γ = 0 is nonempty, bounded, and closed.

Proof. To see closure, let sn → s∗ be a converging sequence of elements in the superdifferential. By
definition, for every γ ∈ Γw∗ we have

k̄w∗(γ) ≤ k̄w∗(0) + snγ.
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But then, for every γ ∈ Γw∗

k̄w∗(γ) ≤ k̄w∗(0) + s∗γ.

Thus, s∗ ∈ ∂k̄w∗(0).

For nonemptiness and boundedness, by Rockafellar (1997, Theorem 23.4), it suffices to show
that 0 ∈ int(Γw∗).

Step 1: We first show that 0 ∈ Γw∗ . As Θ is centrosymmetric, convex and nonempty, 0 ∈ Θ,
where 0 is the zero vector in Θ. As m(·) is linear, it follows (w∗)⊤m(0) = (w∗)⊤0 = 0, where
0 := 0n×1. That is, 0 ∈ Γw∗ .

Step 2: We show that there exists some γ ̸= 0 such that γ ∈ Γw∗ . Let S be an open set in Rn

for which
I(µ) < 0 < I(µ), ∀ µ ∈ S.

Such a set exists because the problem exhibits nontrivial partial identification. Pick any θ ∈ Θ such
that m(θ) ∈ S. If (w∗)⊤m(θ) ̸= 0, then the initial claim of step 2 follows. If (w∗)⊤m(θ) = 0, then
note as S is open, we can pick some ϵ > 0 small enough such that m(θ) + ϵw∗ ∈ S. It follows then
(w∗)⊤(m(θ) + ϵw∗) = ϵ > 0. Therefore, the claim of step 2 is verified.

Step 3: We show that Γw∗ is symmetric around zero. Using the conclusion from Step 2, pick any
γ ∈ Γw∗ and γ ̸= 0. Then there exists θ ∈ Θ such that γ = (w∗)⊤m(θ). Since Θ is centrosymmetric,
−θ ∈ Θ as well. As (w∗)⊤m(−θ) = −(w∗)⊤m(θ) = −γ by linearity of m(·), one has −γ ∈ Γw∗ .
That is, M is symmetric around zero.

Steps 1-3 then imply that Γw∗ is a symmetric interval around zero and that 0 ∈ int(Γw∗).

Lemma B.4. If sw∗(0) > 0 and k̄w∗(0) >
√

π
2

√
(w∗)⊤Σw∗·sw∗(0), then the right-hand side of (A.16)

equals k̄w∗(0)/2 and infinitely many rules attain this value. In particular, any convex combination
of the rules in Equations (A.17)-(A.18) solves the problem in Expression (A.16).

Proof. As sw∗(0) > 0, the value of the linear embedding problem in (A.16) equals sw∗(0) times

inf
d∈D

sup
γ∈R

(
sup

Ũ∗∈[−k+γ, k+γ]

Ũ∗
(
1{Ũ∗ ≥ 0} − Eγ[d(γ̂)]

))
, (B.1)

where

γ̂ ∼ N(γ, σ2), σ2 = (w∗)⊤Σw∗, k :=
k̄w∗(0)

sw∗(0)
.

Stoye (2012a) shows that, if k >
√
π/2 σ (which holds if and only if k̄w∗(0) >

√
π
2

√
(w∗)⊤Σw∗ ·
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sw∗(0)), then
d∗Gaussian := Φ

(
γ̂/
√

2k2/π − σ2
)

solves (B.1) and its worst-case regret is attained at γ = 0; that is, (B.1) equals

sup
γ∈R

(
sup

Ũ∗∈[−k+γ, k+γ]

Ũ∗
(
1{Ũ∗ ≥ 0} − Eγ[d

∗
Gaussian(γ̂)]

))
,

and this expression equals

sup
Ũ∗∈[−k, k]

Ũ∗
(
1{Ũ∗ ≥ 0} − Eγ[d

∗
Gaussian(γ̂)]

)
.

Moreover, the MMR value (B.1) equals k/2. Since d∗RT = d∗Gaussian, this implies that d∗RT solves the
problem in Equation (A.16) and that this problem has value k̄w∗(0)/2.

Lemma B.5 establishes that d∗linear and d∗mixture equally attain MMR. Since the set of MMR
optimal rules is closed under convex combination, this establishes the claim.

Lemma B.5. If k >
√
π/2σ, then following rule solves the linear embedding minimax problem

defined in (B.1):

d∗linear :=


0, γ̂ < −ρ∗,
γ̂+ρ∗

2ρ∗
, −ρ∗ ≤ γ̂ ≤ ρ∗,

1, γ̂ > ρ∗,

(B.2)

where ρ∗ ∈ (0, k) is the unique solution of(
ρ∗

2 · k

)
− 1

2
+ Φ

(
−ρ

∗

σ

)
= 0. (B.3)

Proof. Lemma B.6(i) shows that ρ∗ ∈ (0, k) exists and is unique. Recall again from Stoye (2012a)
that, if k >

√
π/2 σ, the MMR value of the problem is k/2, where

I(γ) := [−k + γ, k + γ] , R(d, γ, γ∗) := γ∗ (1{γ∗ ≥ 0} − Eγ[d]) . (B.4)

Furthermore, by definition of the minimax problem,

inf
d∈D

sup
γ∗∈I(γ),γ∈R

R(d, γ, γ∗) ≤ sup
γ∗∈I(γ),γ∈R

R(d∗linear, γ, γ
∗).
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And Lemma B.7 shows that, when k >
√
π/2σ,

sup
γ∗∈I(γ),γ∈R

R(d∗linear, γ, γ
∗) = k/2

and
sup

γ∗∈I(0)
R(d∗linear, 0, γ

∗) = k/2

Hence, we conclude that

inf
d∈D

sup
γ∗∈I(γ),γ∈R

R(d, γ, γ∗) = sup
γ∗∈I(γ),γ∈R

R(d∗linear, γ, γ
∗) =

k

2
,

and thus d∗linear is MMR optimal, and its worst-case regret is achieved at γ = 0.

Lemma B.6. Consider ρ∗ defined in Lemma B.5.

(i) ρ∗ ∈ (0, k) exists and is uniquely defined when k
σ
>
√

π
2
.

(ii) The value of ρ∗ is strictly decreasing in σ. Moreover, ρ∗ → k when σ → 0.

(iii) The value of ρ∗ is strictly increasing in k.

Proof. Note (
ρ∗

2 · k

)
− 1

2
+ Φ

(
−ρ

∗

σ

)
= 0.

is equivalent to

1− k

ρ∗

(
1− 2Φ

(
−ρ

∗

σ

))
= 0. (B.5)

Write g(ρ; k, σ) = 1− k
ρ

(
1− 2Φ

(
− ρ

σ

))
.

To see (i), further write

∂

∂ρ
g =

k

ρ2

(
1− 2Φ

(
−ρ

σ

))
− 2k

ρσ
ϕ
(
−ρ

σ

)
=

k

ρ2

(
1− 2

(
Φ
(
−ρ

σ

)
+
ρ

σ
ϕ
(
−ρ

σ

)))
=

k

ρ2

(
1− 2

(
Φ
(
−ρ

σ

)
− ϕ′

(
−ρ

σ

)))
.

Note Φ (x) < 1
2

and ϕ′(x) > 0 for all x < 0. Thus, Φ
(
− ρ

σ

)
−ϕ′ (− ρ

σ

)
< 1

2
for all ρ > 0. It follows
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that ∂
∂ρ
g > 0, i.e. g is strictly increasing in ρ for all ρ > 0. Furthermore, note

lim
ρ→0

g(ρ, k, σ) = 1− k

σ

√
2

π
= 1− k

σ

1

C

g(k, k, σ) = 2Φ

(
−k
σ

)
.

If k
σ
> C, note limgρ→0(ρ, k, σ) < 0, g(k, k, σ) > 0 and g(·; k, σ) is continuous and strictly increasing.

Thus, there exists a unique ρ∗ such that g(ρ∗; k, σ) = 0.

To see (ii), note first that ∂
∂σ
g = 2k

σ2ϕ
(
− ρ

σ

)
> 0. Thus, viewing ρ∗ as a function of k and σ, we

can see
∂ρ∗

∂σ
= −

∂
∂σ
g(ρ∗; k, σ)

∂
∂ρ∗

g(ρ∗; k, σ)
< 0.

Therefore, ρ∗ is strictly decreasing in σ. When σ → 0, Φ
(
− ρ

σ

)
→ 0 for each fixed ρ > 0. Then, in

the limit when σ = 0, g(ρ∗; k, 0) = 0 is solved by setting ρ∗ = k.

To see (iii), note first that ∂
∂k
g(ρ∗; k, σ) = −

(
1− 2Φ

(
−ρ∗

σ

))
/ρ∗ < 0. The remaining proof

mimics that of statement (ii).

Lemma B.7. Suppose k >
√

π
2
σ. Then

sup
γ∗∈I(γ),γ∈R

R(d∗linear, γ, γ
∗) = k/2 (B.6)

and
sup

γ∗∈I(0)
R(d∗linear, 0, γ

∗) = k/2, (B.7)

where I(γ) and R(d, γ, γ∗) are defined in (B.4).

Proof. We may write the left-hand side of (B.6) as

sup
γ∗∈I(γ),γ∈R

R(d∗linear, γ, γ
∗) = sup

γ+k≥0
(γ + k) (1− Eγ[d

∗
linear]) = sup

γ+k≥0
glinear(µ) (B.8)

glinear(γ) := (γ + k)

∫ 1

0

Φ

(
2ρ∗x− ρ∗ − γ

σ

)
dx, (B.9)

where the first equality follows from symmetry of the parameter space and the fact that d∗linear(−x) =
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1− d∗linear(x) for all x ∈ R, and the second equality follows by applying change-of-variable twice:

Eγ[d
∗
linear]

=

∫
(d∗linear(x))dΦ

(
x− γ

σ

)
=

∫ ρ∗

−ρ∗

x+ ρ∗

2ρ∗
dΦ

(
x− γ

σ

)
+

∫ ∞

ρ∗
dΦ

(
x− γ

σ

)

=

[
x+ ρ∗

2ρ∗
Φ

(
x− γ

σ

)]ρ∗
−ρ∗

−
∫ ρ∗

−ρ∗
Φ

2ρ∗
(

x+ρ∗

2ρ∗
− 1

2

)
− γ

σ

 d

(
x+ ρ∗

2ρ∗

)
+ 1− Φ

(
ρ∗ − γ

σ

)

= 1−
∫ 1

0

Φ

(
2ρ∗x− ρ∗ − γ

σ

)
dx.

Now, E0[d
∗
linear(γ̂)] =

1
2

and glinear(0) =
k
2

by construction. Below, we show that glinear(γ) is first
increasing and then decreasing on [−k,∞) with unique maximum at γ = 0, establishing the claim.
To see this, take first and second derivatives of glinear(γ):

g
(1)
linear(γ) = −γ + k

σ

∫ 1

0

ϕ

(
2ρ∗x− ρ∗ − γ

σ

)
dx+

∫ 1

0

Φ

(
2ρ∗x− ρ∗ − γ

σ

)
dx,

g
(2)
linear(γ) =

γ + k

σ2

∫ 1

0

ϕ(1)

(
2ρ∗x− ρ∗ − γ

σ

)
dx− 2

σ

∫ 1

0

ϕ

(
2ρ∗x− ρ∗ − γ

σ

)
dx

=
γ + k

σ2

∫ 1

0

γ + ρ∗ − 2ρx

σ
ϕ

(
2ρ∗x− ρ∗ − γ

σ

)
dx− 2

σ

∫ 1

0

ϕ

(
2ρ∗x− ρ∗ − γ

σ

)
dx

=
γ + k

2ρ∗σ

∫ −γ+ρ∗
σ

−γ−ρ∗
σ

−tϕ(t)dt− 1

ρ∗

∫ −γ+ρ∗
σ

−γ−ρ∗
σ

ϕ(t)dt

=
γ + k

2ρ∗σ

∫ γ+ρ∗
σ

γ−ρ∗
σ

tϕ(t)dt− 1

ρ∗

∫ γ+ρ∗
σ

γ−ρ∗
σ

ϕ(t)dt

=
1

2ρ∗

∫ γ+ρ∗
σ

γ−ρ∗
σ

ϕ(t)dt︸ ︷︷ ︸
:=A

γ + k

σ

∫ γ+ρ∗
σ

γ−ρ∗
σ

tϕ(t)dt∫ γ+ρ∗
σ

γ−ρ∗
σ

ϕ(t)dt
− 2

 ,

where the second equality for g(2)linear(γ) uses that ϕ′(x) = −xϕ(x) for all x ∈ R, the third one follows
from integration by change-of-variable, and the fourth equality follows from change-of-variable again
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and ϕ(x) = ϕ(−x) for all x ∈ R. As A > 0, the sign of g(2)linear(γ) is determined by

g∗linear(γ) :=
γ + k

σ

∫ γ+ρ∗
σ

γ−ρ∗
σ

tϕ(t)dt∫ γ+ρ∗
σ

γ−ρ∗
σ

ϕ(t)dt
− 2.

Furthermore, we can write

g∗linear(γ) =
γ + k

σ
E
[
Z | γ − ρ∗

σ
≤ Z ≤ γ + ρ∗

σ

]
− 2,

where E (Z | a ≤ Z ≤ b) denotes the conditional expectation of a standard normal random variable
Z conditional on a ≤ Z ≤ b. We are only interested in γ+k ≥ 0. Also, note E

[
Z | γ−ρ∗

σ
≤ Z ≤ γ+ρ∗

σ

]
strictly increases in γ and has the same sign as γ. Moreover, note E

[
Z | −ρ∗

σ
≤ Z ≤ ρ∗

σ

]
= 0,

implying g∗linear(0) = −2. Thus, we conclude g(2)linear(γ) < 0 for all γ below some strictly positive
threshold and g(2)linear(γ) > 0 for all larger γ. That is, glinear(γ) is first concave and then convex, with
the inflexion occurring at a strictly positive point.

Since glinear(γ) ≥ 0 when γ ≥ −k and it can also be verified that glinear(−k) = 0 and
limγ→∞ glinear(γ) = 0, we conclude that glinear(·) is first strictly increasing and then strictly
decreasing, with a unique maximum. Furthermore, note

g
(1)
linear(0) = −k

σ

∫ 1

0

ϕ

(
2ρ∗x− ρ∗

σ

)
dx+

∫ 1

0

Φ

(
2ρ∗x− ρ∗

σ

)
dx

= − k

2ρ∗

∫ ρ∗
σ

− ρ∗
σ

ϕ (t) dt+
σ

2ρ∗

∫ ρ∗
σ

− ρ∗
σ

Φ (t) dt

= − k

2ρ∗

(
Φ

(
ρ∗

σ

)
− Φ

(
−ρ

∗

σ

))
+

1

2

=
1

2
− k

2ρ∗

(
1− 2Φ

(
−ρ

∗

σ

))
= 0,

where the second equality applies change-of-variable and the last equality follows from the definition
of ρ∗, which exists and is unique when k > Cσ by Lemma B.6. Thus, glinear(· ) has a unique
maximization point in [−k,∞) at γ = 0.
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Lemma B.8. Under assumptions made in Theorem 3,

d0 := d0((w
∗)⊤Y ) := 1{(w∗)⊤Y ≥ 0}

is not MMR optimal.

Proof. By Step 1 in the proof of part (i) of Theorem 3, we know the MMR value of problem (A.4)
equals k̄w∗(0)/2. In contrast, we will show that

R∗
w∗,0 := sup

θ∈Θ
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d0((w

∗)⊤Y )]
)
> k̄w∗(0)/2.

Write

R∗
w∗,0 = sup

γ∈Γw∗

(
sup

U∗∈(−k̄w∗ (−γ), k̄w∗ (γ))

U∗ (1{U∗ ≥ 0} − Eγ[d0((w
∗)⊤Y )]

))
= sup

γ∈Γw∗ ,k̄w∗ (γ)>0

k̄w∗(γ)
(
1− Eγ[d0((w

∗)⊤Y )]
)

= sup
γ∈Γw∗ ,k̄w∗ (γ)>0

k̄w∗(γ)Φ
(
−γ
σ

)
,

using first centrosymmetry of Θ and then (w∗)⊤Y ∼ N(γ, σ2), where σ2 := (w∗)⊤Σw∗. Write
g(γ) := k̄w∗(γ)Φ(− γ

σ
) for γ ∈ Γw∗ such that k̄w∗(γ) > 0. By definition

g(0) = k̄w∗(0)/2.

Let ∂g(·) be the generalized gradient of g(·). In the following, we show that 0 /∈ ∂g(0). By Clarke
(1990, Proposition 2.3.2), 0 is then not a local maximum or minimum; hence, R∗

w∗,0 > k̄w∗(0)/2.

Note Φ(·) is strictly differentiable and thus Lipschitz near 0 (Clarke, 1990, Proposition 2.2.4).
Also, as k̄w∗(0) is concave and bounded from below near 0, k̄w∗(·) must be Lipschitz near 0 (Clarke,
1990, Proposition 2.2.6). Moreover, both k̄w∗ and Φ are regular at 0 (Clarke, 1990, Proposition
2.3.6) as well as positive. By Clarke (1990, Proposition 2.3.13), the (appropriately generalized)
chain rule can be applied to g to characterize ∂g(0).

As Φ is strictly differentiable, its generalized gradient coincides with the unique derivative
(Clarke, 1990, Proposition 2.2.4)). As k̄w∗ is concave and Lipschitz near 0, its generalized gradient
coincides with its superdifferential (Clarke, 1990, Proposition 2.2.7)). Hence, let s̃w∗(0) be a
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supergradient of k̄w∗(0). We may calculate the generalized gradient of g(γ) at γ = 0 as

s̃w∗(0)

2
− k̄w∗(0)ϕ(0)

σ

=
ϕ(0)

σ

(√
π

2
σ · s̃w∗(0)− k̄w∗(0)

)
≤ϕ(0)

σ

(√
π

2
σ · sw∗(0)− k̄w∗(0)

)
< 0,

where the first inequality follows as sw∗(0) is the largest supergradient so sw∗(0) ≥ s̃w∗(0), and
the second inequality follows from noting I(0) = k̄∗w(0) under stated assumptions (by Step 1 in the
proof of Theorem 3(i)) and by picking I(0) large enough so that I(0) >

√
π/2 · σ · sw∗(0). Thus,

we have shown that ∂g(0) < 0, and therefore 0 is not a local maximum or minimum.

B.2 Proof of Proposition 1

Statements (i)-(ii). In the running example, the expected regret of a rule d(·) can be written as

R(d, µ, µ0) = µ0 (1{µ0 ≥ 0} − Eµ[d(Y )]) , µ ∈M,µ0 ∈ I(µ).

where Y ∼ N(µ,Σ); for future use, we state its likelihood

f(y | µ) = 1√
(2π)nΠn

j=1σ
2
j

exp

(
−1

2

n∑
i=1

(yi − µi)
2

σ2
i

)
.

Consider the class of decision rules (parameterized by scalar m0 ≥ C∥x1 − x0∥)

dm0 := 1{w⊤
m0
Y ≥ 0}

w⊤
m0

:=

(
1,

max{m0 − C ∥x2 − x0∥ , 0}/σ2
2

(m0 − C ∥x1 − x0∥)/σ2
1

, . . . ,
max{m0 − C ∥xn − x0∥ , 0}/σ2

n

(m0 − C ∥x1 − x0∥)/σ2
1

)
,

with the understanding that, for m0 = C∥x1 − x0∥, we have w⊤
m0

= (1, 0, . . . , 0). Consider also the
class of priors πm0 that randomize evenly over

{(
µ0, µ

⊤)⊤ , (−µ0,−µ⊤)⊤}, where

µ0 = m0

µj = max {m0 − C ∥xj − x0∥ , 0} , j = 1, . . . , n (B.10)
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for some m0 ≥ C∥x1 − x0∥. We will show that i) for any prior πm0 , rule dm0 is a corresponding
Bayes rule, uniquely so if m0 > C∥x1−x0∥, ii) for any decision rule dm0 , a prior πm̃0 (note m̃0 ̸= m0

in general) is least favorable, and finally that iii) the resulting best-response mapping has a fixed
point m∗

0. This fixed point defines the MMR rule from the proposition, which is furthermore unique
whenever it is uniquely Bayes against πm∗

0
.22

Regarding step i), if m0 > C∥x1 − x0∥, the unique Bayes response to πm0 equals

1 {E[µ0 | Y ] ≥ 0}

= 1 {f(Y |µ)− f(Y | − µ) ≥ 0}

= dm0(Y ),

where the last step uses familiar normal likelihood algebra.23 Any decision rule is Bayes against
πm0 if m0 = C∥x1 − x0∥.

Regarding ii), observe that expected regret of dm0 depends on θ only through (µ, µ0) and that
maximizing it amounts to solving

sup
µ∈M,µ0∈I(µ)

µ0

(
1{µ0 ≥ 0} − Φ

(
w⊤

m0
µ√

w⊤
m0

Σwm0

))

= sup
µ∈M,µ0∈I(µ),µ0≥0

µ0Φ

(
−

w⊤
m0
µ√

w⊤
m0

Σwm0

)
,

where we used centrosymmetry of Θ and where

M = {µ ∈ Rn : |µi − µj| ≤ C ∥xi − xj∥ , i, j = 1 . . . n, i ̸= j} .

I(µ) = {u ∈ R : |µi − u| ≤ C ∥xi − x0∥ , i = 1, . . . .n} .

Let j∗m0
be the highest index j for which wm0,j is not 0. Then, µ0Φ

(
− w⊤

m0
µ√

w⊤
m0

Σwm0

)
does not depend

on (µj∗m0
+1, . . . , µn) and decreases in (µ1, . . . , µj∗m0

). It follows that some prior πm̃0 is least favorable,

22Thus, we use the game theoretic characterization of maximin-type decision rules (e.g., Berger (1985, Section 5)).
23This may be easier to see upon multiplying wm0 through by m0 − C∥x1 − x0∥)/σ2

1 . Our notation is meant to
clarify continuity and convergence to (1, 0, . . . , 0).
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where furthermore m̃0 is the optimal argument µ0 in

sup
µ∈M,µ0∈I(µ),µ0≥0

µ0Φ

(
−

w⊤
m0
µ√

w⊤
m0

Σwm0

)
= sup

µ0≥0
g(µ0,m0),

g(µ0,m0) = µ0Φ

−

∑n
j=1

max{m0−C∥xj−x0∥,0}(µ0−C∥xj−x0∥)
σ2
j√∑n

j=1
max2{m0−C∥xj−x0∥,0}

σ2
j

 .

Regarding iii), the best-response mapping ψ : [C ∥x1 − x0∥ ,∞) ⇒ [0,∞) defined by24

ψ(m0) := arg sup
µ0≥0

g(µ0,m0) (B.11)

has a fixed point m∗
0 ∈ ψ(m∗

0). To see this, first compactify the domain of µ0 in the above definition
by noting that m̃0 can be universally bounded from above. This is because, for any m0 under
consideration, one has g(C∥x1 − x0∥,m0) = C∥x1 − x0∥/2 but also

g(µ0,m0) = µ0(1− Pr(w⊤
m0
Y ≥ 0)) ≤ µ0(1− Pr(Y ≥ 0)) = µ0

(
1−

n∏
j=1

Φ(−µj/σj)

)
.

Using (B.10), this upper bound is seen to vanish as m0 → ∞. Hence, it is w.l.o.g. to change
the constraint set in (B.11) to 0 ≤ µ0 ≤ µ0 for µ0 large enough (but independent of m0). Given
this compactification, continuity of g(·) implies nonemptiness and upper hemicontinuity of ψ(·).
Next, by algebra resembling Proposition 7 in Stoye (2012a, see also Lemma B.7 above), for any
fixed m0 the function g(µ0,m0) is first concave then convex in µ0 and converges to 0 [−∞] as
µ0 → ∞ [µ0 → −∞]. Hence, ψ(·) is interval-valued. These observations jointly imply that the
graph of ψ(·) is path-connected. We show below that (with slight abuse of notation for set-valued
mappings) ψ(C ∥x1 − x0∥) ≥ C ∥x1 − x0∥, and we already know that ψ(m0) < m0 for m0 > µ0.
This establishes existence of m∗

0.

We next show that ψ(C∥x1 − x0∥) ≥ C∥x1 − x0∥, strictly so if C∥x1 − x0∥ <
√
π/2 · σ1. This is

because for m0 = C∥x1 − x0∥, we have

g(µ0,m0) = µ0Φ

(
C ∥x1 − x0∥ − µ0

σ1

)
=⇒ ∂g(µ0,m0)

∂µ0

∥∥∥∥
µ0=C∥x1−x0∥

= −C ∥x1 − x0∥ϕ(0)
σ1

+
1

2
.

24The mapping is in fact a function, but establishing that would be unnecessary work.
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After substituting in for ϕ(0) and simplifying, the above partial derivative is seen to have the same
sign as

√
π/2 · σ1 − C∥x1 − x0∥. This establishes the claim and also proves statement (ii) because

the fixed point m∗
0 = C∥x1 − x0∥ has been discovered for that statement’s case.

This concludes the proof. For ease of computation, we note that, after tedious algebra, m∗
0 can

be uniquely characterized by

Φ

(
−
√∑n

j=1

max2{m∗
0−C∥xj−x0∥,0}

σ2
j

)

ϕ

(
−
√∑n

j=1

max2{m∗
0−C∥xj−x0∥,0}

σ2
j

) = m∗
0

∑n
j=1

max{m∗
0−C∥xj−x0∥,0}

σ2
j√∑n

j=1

max2{m∗
0−C∥xj−x0∥,0}

σ2
j

. (B.12)

Statement (iii). Below, we show d∗RT((w
∗)⊤Y ) = Φ

(
(w∗)⊤Y/σ̃), where σ̃ =√

2C2∥x1 − x0∥2/π − σ2
1 and w∗ = (1, 0, . . . , 0)⊤ is MMR optimal and satisfies (3.8) and (3.9).

Therefore, results in Theorem 3 apply. In particular, Lemma B.4 implies that d∗linear defined in
(3.10) with ρ such that C∥x1−x0∥−ρ∗

2C∥x1−x0∥ = Φ(−ρ∗/σ1), as well as any convex combination of d∗RT and
d∗linear, are also MMR optimal. Let

R := min
d∈Dn

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)
be the minimax value of the problem in the running example.

Step 1: We show R ≤ C∥x1 − x0∥/2 because this bound is attained by d∗RT(·). To see this, use
Step 2 of the proof of Theorem 3 to write

R ≤ sup
θ∈Θ

θ0
(
1{θ0 ≥ 0} − Em(θ)[d

∗
RT((w

∗)⊤Y )]
)

(B.13)

= sup
γ∈R

 sup
U∗∈[−k̄w∗ (−γ), k̄w∗ (γ)]

U∗ (1{U∗ ≥ 0} − Eγ[d
∗
RT((w

∗)⊤Y )]
) , (B.14)

where w∗ = (1, 0, . . . , 0)⊤ and k̄w∗(γ) is defined in (A.11) and calculated as

sup θ0

s.t. |θi − θj| ≤ C∥xi − xj∥, i, j = 0, ..., n, (B.15)

θ1 = γ.
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As ∥x1 − x0∥ ≤ ∥xj − x0∥ for all j = 1, ..., n, the linear program (B.15) admits a simple solution
k̄w∗(γ) = γ + C∥x0 − x1∥. Therefore, (B.14) can be further written as

sup
γ∈R

(
sup

U∗∈[γ−C∥x0−x1∥, γ+C∥x0−x1∥]
U∗ (1{U∗ ≥ 0} − Eγ[d

∗
RT((w

∗)⊤Y )]
))

, (B.16)

where (w∗)⊤Y ∼ N(γ, σ2
1). Applying Stoye (2012a) with k = C∥x0 − x1∥ and σ = σ1, we conclude

that when C∥x1 − x0∥ >
√
π/2 · σ1, d∗RT((w

∗)⊤Y ) solves the minimax problem

min
d∈D

sup
γ∈R

(
sup

U∗∈[γ−C∥x0−x1∥, γ+C∥x0−x1∥]
U∗ (1{U∗ ≥ 0} − Eγ[d((w

∗)⊤Y )]
))

and the value of (B.16) equals C∥x0 − x1∥/2.

Step 2: R ≥ C∥x1 − x0∥/2 because this value is attained by setting (θ1, . . . , θn) = 0:

R ≥ min
d∈Dn

sup
θ∈Θ:θ=(θ0,0)

θ0 (1{θ0 ≥ 0} − E0[d(Y )])

= min
d∈Dn

max
{
I(0) (1− E0[d(Y )]) , I(0)E0[d(Y )]

}
,

where the last line used I(0) = −I(0). This minimum is attained by any rule with E0[d(Y )] = 1/2,
and its value equals I(0)/2 = C∥x1 − x0∥/2.

As E0[d
∗
RT((w

∗)⊤Y )] = 1/2, the last step above also verifies (3.8). Optimality of d∗RT in Step 1
verified (3.9).

Statement (iv). Using that x1 is a unique nearest neighbor, we have that, for µ close to 0,
I(µ) = µ1+C ∥x1 − x0∥. This is clearly differentiable at µ = 0 and Theorem 3(iii) therefore applies.

B.3 Additional Results

B.3.1 Profiled Regret in the Running Example

In the running example, consider w∗-profiled regret, recalling that w∗ = (1, 0)⊤. By the definition
in (4.2), the w∗-profiled regret function of a rule d ∈ D2 equals

Rw∗(d, γ) = sup
θ∈Θ s.t. m1(θ)=γ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)
.
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Specifically, we look at three rules:

d0((w
∗)⊤Y ) = d0(Y1) = 1{Y1 ≥ 0}

d∗RT((w
∗)⊤Y ) = d∗RT(Y1)

d∗linear((w
∗)⊤Y ) = d∗linear(Y1)

defined in (3.7)-(3.11).

As these rules depend on data only via (w∗)⊤Y , for d ∈ {d0, d∗RT, d
∗
linear} we can write

Rw∗(d, γ) = sup
θ∈Θ s.t. m1(θ)=γ

U(θ)
(
1{U(θ) ≥ 0} − Em1(θ)[d(Y1)]

)
= sup

U∗∈[−k̄w∗ (−γ), k̄w∗ (γ)]
U∗ (1{U∗ ≥ 0} − Eγ[d(Y1)]) ,

where k̄w∗(γ) is defined in (A.11), and (B.15) solves for k̄w∗(γ) = γ + k, where k = C∥x0 − x1∥.
Therefore, we may further calculate

Rw∗(d, γ)

= sup
U∗∈[γ−k, γ+k]

U∗ (1{U∗ ≥ 0} − Eγ[d(Y1)])

=max

{
sup

U∗∈[γ−k, γ+k],U∗≥0

U∗ (1− Eγ[d(Y1)]) , sup
U∗∈[γ−k, γ+k],U∗≤0

−U∗Eγ[d(Y1)]

}

=


(−γ + k)Eγ[d(Y1)], if γ < −k,

max {(γ + k) (1− Eγ[d(Y1)]) , (−γ + k)Eγ[d(Y1)]} , if − k ≤ γ ≤ k,

(γ + k)(1− Eγ[d(Y1)]), if γ > k.

As Y1 ∼ N(γ, σ1), algebra shows Eγ[d0(Y1)] = Φ
(

γ
σ1

)
, Eγ[d

∗
RT(Y1)] = Φ

(√
π
2
γ
k

)
, and

Eγ[d
∗
linear(Y1)] = Φ

(
γ − ρ∗

σ1

)
+

σ1
2ρ∗

1√
2π

[
e
− 1

2

(
ρ∗+γ
σ1

)2

− e
− 1

2

(
ρ∗−γ
σ1

)2
]

+
γ + ρ∗

2ρ∗

[
Φ

(
ρ∗ − γ

σ1

)
− Φ

(
−ρ∗ − γ

σ1

)]
.

The w∗-profiled regret of the three rules can then be calculated easily following our characterizations
above.
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B.3.2 Plot of Profiled Regret for the Plug-in Rule

We plot and compare the w∗-profiled regrets of dplug-in defined in (4.14) and those of other rules,
including d∗linear and d∗RT. See Figure 4 for details. Note dplug-in is not MMR optimal: its w∗-profiled
regret at γ = 0 is slightly larger than the MMR value of the problem. Moreover, the w∗-profiled
regret curve of dplug-in is bell-shaped and similar to that of d∗linear.

Figure 4: w∗-profiled regrets of dplug-in in (4.14) and other rules. The top left plot uses parameters
of the running examples from Figure 1; the rest of the plots change the value of x2 while keeping
other parameters the same.

B.3.3 Verification of Theorem 1 for the Example in Section 5.1

By Theorem 1, it suffices to show that the statistical model in (5.1) and the welfare contrast
in (5.2) display nontrivial partial identification in the sense of Definition 2. Note the image of
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(m1(θ),m2(θ))
⊤ in this example is defined as

M =
{
(µ1, µ2)

⊤ ∈ R2|m1(θ) = µ1,m2(θ) = µ2, θ ∈ Θ
}
.

The restrictions on p(0) and p(1) are: p(1) ∈ [0, 1], p(0) ∈ [0, 1], p(1) ≥ p(0) and p(1) + α ≤
1. Without any additional shape restrictions on MTE(·), any functions from [0, 1] to [−1, 1] are
compatible with the model. Hence, we can deduce that

M =
{
(µ1, µ2)

⊤ ∈ R2|µ1 ∈ [−µ2, µ2], 0 ≤ µ2 ≤ 1− α
}
.

The identified set of U(θ) is then

I(µ1, µ2) = {u ∈ R|U(θ) = u,m1(θ) = µ1,m2(θ) = µ2, θ ∈ Θ} , for all (µ1, µ2)
⊤ ∈M.

with extrema

I(µ1, µ2) = sup
m1(θ)=µ1,m2(θ)=µ2,θ∈Θ

{
m1(θ)

α +m2(θ)
+

1

α +m2(θ)

∫ p(1)+α

p(1)

MTE(v)dv

}

=
µ1

α + µ2

+
1

α + µ2

sup

{∫ p(1)+α

p(1)

MTE(v)dv

}
=

µ1

α + µ2

+
α

α + µ2

and similarly
I(µ) =

µ1

α + µ2

− α

α + µ2

.

Let

S =
{
(µ1, µ2)

⊤ ∈ R2 : −min (α, 1− α) < µ1 < min (α, 1− α) , 0 ≤ µ2 ≤ 1− α
}
⊆ R2.

We can verify that for any (µ1, µ2)
⊤ ∈ S,

I(µ1, µ2) =
µ1

α + µ2

− α

α + µ2

< 0 <
µ1

α + µ2

+
α

α + µ2

= I(µ1, µ2).

Therefore, the statistical model in (5.1) and the welfare contrast in (5.2) exhibit nontrivial partial
identification as defined in 2, and Theorem 1 applies to the example in Section 5.1.
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Abstract

We present a decision-theoretic justification for viewing the question of how to best choose

where to experiment in order to optimize external validity as a k-median (clustering) problem,

a popular problem in computer science and operations research. We present conditions under

which minimizing the worst-case, welfare-based regret among all nonrandom schemes that

select k sites to experiment is approximately equal—and sometimes exactly equal—to finding

the k most central vectors of baseline site-level covariates. The k-median problem can be

formulated as a linear integer program. Two empirical applications illustrate the theoretical

and computational benefits of the suggested procedure.

1 Introduction

A common concern in randomized evaluations of new policies is their external validity ; that is,

whether the estimated effects of a policy intervention carry over to new samples or populations

(Vivalt, 2020; Gechter, 2024; Duflo, Glennerster, and Kremer, 2007, Chapter 8). There is a large

body of literature arguing that the external validity of randomized evaluations can be improved by

explicitly incorporating this goal into the experimental design by, for example, carefully deciding

where to experiment; see Degtiar and Rose (2023) for an overview and references, and also the

recent work of Chassang and Kapon (2022). For instance, if a researcher has access to multiple
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Kei Hirano, Yiqi Liu, Francesca Molinari, Charles Manski, Guillaume Pouliot, David Shmoys, and Davide Viviano
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research assistance. We gratefully acknowledge financial support from the NSF under grant SES-2315600.

†Cornell University. Department of Economics. Corresponding author: montiel.olea@gmail.com
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sites to experimentally evaluate a new policy, it is possible to use the information available before

the evaluation (such as site-level characteristics) to nonrandomly select one site—or more—that are

“representative” of the populations of interest. Recently, both Egami and Lee (2024) and Gechter,

Hirano, Lee, Mahmud, Mondal, Morduch, Ravindran, and Shonchoy (2024) have shown that a

research design that nonrandomly selects experimental sites—referred to broadly in the literature

as purposive sampling (Cook, Campbell, and Shadish, 2002, p. 511)—is useful to improve the

external validity of randomized evaluations.

This paper presents a theoretical justification for viewing the question of how to best de-

sign a purposive sampling scheme—or, equivalently, how to best nonrandomly select k sites to

experiment—with the goal of optimizing external validity as a k-median problem. This is a classical

problem in computer science and operations research (Williamson and Shmoys, 2011; Cohen-Addad,

Esfandiari, Mirrokni, and Narayanan, 2022). Broadly speaking, in a k-median problem, there is a

set of facilities and a set of clients ; the goal is to open at most k facilities and connect each client

to at least one facility at minimal total connection cost. We next provide more specific details on

how these problems relate.

Statistical Decision Theory: Under conditions that will be explained clearly in Sections 2

and 3, Theorem 1 in this paper shows that the worst-case (welfare-based) regret of any purposive

sampling scheme that selects at most k sites to experiment is approximately equal—and sometimes

exactly equal—to the objective function of a k-median problem with the following features. First,

the sites available for experimentation are treated as facilities. Second, the sites where the pol-

icy maker would like to implement the new policy are treated as clients. Third, the connection

cost between clients and facilities is proportional to the Euclidean distance between the available

site-level covariates. Importantly, we show that the solution of the k-median problem is exactly

“minimax-regret” optimal (among all purposive sampling schemes) when i) the candidate sites for

experimentation and the policy-relevant sites are disjoint (Remark 4) and ii) the treatment effect

heterogeneity across sites accommodated in the parameter space is substantial (in a sense Theorem

1 makes precise). When ii) holds but i) does not, we show that the optimized value of the k-median

problem only approximates the minimax-regret value, and that the approximation error improves

as either the number of policy-relevant sites increases or the experiments conducted become more

precise (Remark 5). The link with the k-median problem established in this paper thus shows

that selecting the k sites that have the most central vector of covariates tends to optimize external

validity (in a minimax-regret sense).

In order to formalize this connection, we leverage recent developments in the literature of treat-

ment choice problems with partial identification; for example Yata (2021); Ishihara and Kitagawa
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(2021); Montiel Olea, Qiu, and Stoye (2023). Note first that in the k-median problem, each client

is typically connected to only one facility (otherwise, the connection cost would not be minimized).

In the context of the site selection problem, a connection between a site i (where an experiment

was conducted) and a site j (where no experimentation occurred) means that the estimated ef-

fects obtained in site i are used to inform policy decisions in site j. This means that even when

experimental outcomes in k > 1 sites are available, the solution to the k-median problem would

typically prescribe the policy maker to only use the information from the site with the smallest

connection cost: the nearest neighbor. But when is it decision-theoretically optimal for a policy

maker to behave in this way? After k sites have been selected for experimentation, the policy

maker faces the “evidence aggregation” problem introduced in Ishihara and Kitagawa (2021) and

recently discussed in Yata (2021), Christensen, Moon, and Schorfheide (2022) and Montiel Olea

et al. (2023). That is, the policy maker must decide how to use the estimated treatment effects

in different—and potentially heterogeneous—sites to make a treatment choice (implement the new

policy or preserve the status quo) in the site of interest. It is known that there are conditions under

which it is minimax-regret optimal for the policy maker to base decisions on the nearest neighbor

(the site with the most similar site-level characteristics), provided the true treatment effects are

allowed to vary substantially as a function of site-level covariates; see, for example, Proposition 1 in

Montiel Olea et al. (2023). Moreover, in this case, the optimized worst-case regret is proportional to

the distance between the baseline covariates of the site of interest and those of its nearest neighbor.

Thus, these results on treatment choice problems with partial identification are fundamental to pro-

vide a decision-theoretic justification for the use of the k-median (clustering) problem to optimize

external validity.

Algorithms: The connection with the k-median problem clarifies the problem’s difficulty but

also suggests efficient algorithms. To see the need for those, recall that any purposive sampling

scheme optimizes over “n choose k” potential site combinations, where n is the total number of

sites available for experimentation. Optimization over purposive sampling schemes also requires

the evaluation of some measure of performance that depends on the dimension of the site-level

covariates, d. Thus, optimally choosing a purposive sampling scheme by simply evaluating the

performance of each combination is costly when “n choose k” or d is large.

Conceptually, the connection with the k-median problem allows us to understand the com-

putational complexity of finding a minimax-regret optimal purposive sampling scheme under the

conditions of Theorem 1. Since the k-median problem is known to be NP-hard (Kariv and Hakimi,

1979; Megiddo and Supowit, 1984; Cohen-Addad, De Mesmay, Rotenberg, and Roytman, 2018),

there is no algorithm whose computational time scales polynomially in the problem’s inputs (d, k, n).
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However, from a practical perspective, it is also known that the k-median problem admits a

linear integer program formulation (Williamson and Shmoys, 2011, Chapter 7.7, p. 185), and is

routinely solved with off-the-shelf algorithms such as different versions of the branch-and-bound

method (Bertsimas and Weismantel, 2005, Chapter 11.1). In addition, different branch-and-bound

algorithms either find a solution with provable optimality or, if stopped early, generate a report on

the suboptimality of the solution found (Bertsimas, King, and Mazumder, 2016). As we explain

later, in our application with n = 41, d = 13, any problem for k ∈ {1, . . . , 10} can be solved to

provable optimality in just a few seconds using a personal laptop (see Figure 5 in Section 5).

Related Literature: Our results build on two recent papers that presented novel purposive

sampling strategies to select experimental sites so as to optimize external validity. Gechter et al.

(2024) present an elegant decision-theoretic approach that frames external validity as a policy prob-

lem and—under the assumption that the policy maker has a priori information about the effects

of the new policy across sites—recommend a Bayesian approach for choosing where to experiment.

Egami and Lee (2024) use the principle behind synthetic control (Abadie, Diamond, and Hain-

mueller, 2010) to recommend what they call the synthetic purposive sampling of sites; specifically,

they select good “donors,” defined as sites whose weighted average of observed baseline charac-

teristics are close to the characteristics of the sites of interest. It is important to note that our

decision-theoretic framework leans heavily on Gechter et al. (2024), but also that the sites selected

through the k-median problem can be interpreted as a degenerate synthetic purposive sampling

strategy, whereby each unit’s associated synthetic unit is just its nearest neighbor.

This paper also contributes to the literature arguing that a “modern, decision-theoretic frame-

work can help clarify important practical questions of experimental design” (Banerjee, Chassang,

and Snowberg, 2017). Although decision-theoretic approaches to external validity are recent, a

large body of work used statistical decision theory to analyze other aspects of experimental design,

such as sample size determination (Raiffa and Schlaifer, 1961; Manski and Tetenov, 2016, 2019;

Azevedo, Deng, Montiel Olea, Rao, and Weyl, 2020; Azevedo, Mao, Montiel Olea, and Velez, 2023;

Hu, Zhu, Brunskill, and Wager, 2024). Finally, our notion of external validity is conceptually re-

lated to several areas of research in econometrics, machine learning, and statistics such as domain

adaptation (Mansour, Mohri, and Rostamizadeh, 2009; Ben-David, Blitzer, Crammer, Kulesza,

Pereira, and Vaughan, 2010), distributional shifts (Duchi and Namkoong, 2021; Sugiyama, Kraule-

dat, and Müller, 2007; Adjaho and Christensen, 2022), learning under biased sampling (Sahoo, Lei,

and Wager, 2022), and cross-domain transfer estimation and performance (Andrews, Fudenberg,

Liang, and Wu, 2022; Menzel, 2023). To the best of our knowledge, none of these papers contain

decision-theoretic analyses of where to experiment.
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Outline: This paper is organized as follows. Section 2 introduces the formal framework.

Section 3 presents the main result of this paper (Theorem 1) and explains how the k-median

problem arises naturally when trying to incorporate external validity concerns into the decision

problem of where to experiment. Section 4 presents the linear integer program formulation of the

k-median problem. Section 5 presents two illustrative empirical applications. Section 6 considers

extensions of the baseline model. Section 7 concludes. Proofs of the main results can be found in

Appendix A. Additional results are collected in the Supplementary Appendix.

2 Setting up the Decision Problem

2.1 Notation

A policy maker considers a set of S ∈ N candidate sites to evaluate and, eventually, implement a

new policy of interest. The sites are indexed by s ∈ S ≡ {1, . . . , S}. In order to accommodate

situations in which the policy maker is not necessarily able to experiment in all the candidate sites,

we assume there is a nonempty subset SE ⊆ S of what we term experimental sites.1 Throughout

the paper, and to avoid a trivial instance of the site selection problem, we assume that there are

at least two experimental sites (i.e., card(SE) ≥ 2). It is also possible that institutional restrictions

preclude the eventual implementation of the policy of interest in all of the candidate sites. Thus, it

will be convenient to denote by SP ⊆ S the nonempty set of policy or policy-relevant sites.

In principle—and in order to accommodate different scenarios that could arise in empirical

work—we allow for the case in which there is overlap between experimental and policy sites (i.e.,

SE∩SP ̸= ∅). We note, however, that the case in which these two sets are disjoint (i.e., SE∩SP = ∅)
will be of particular interest. This is because when there is no overlap between experimental and

policy sites, the extrapolation problem faced by the policy maker becomes evident: a policy decision

needs to be made in sites where there has never been a previous experimental evaluation of the

policy of interest.

For each site, the policy maker observes a vector of site characteristics Xs ∈ Rd that may affect

the treatment effect. Thus, we allow for treatment effect heterogeneity across sites, but we restrict

this heterogeneity by assuming that it depends on observable characteristics. Specifically, let the

function τ : Rd → R define conditional (on X) average treatment effects. We posit that any pair

1As discussed in Allcott (2015), there are often systematic reasons determining the eligibility of certain sites for
experimentation. For example, in microfinance RCT studies, experiments often require large sample sizes and well-
managed microfinance institutions (MFIs), characteristics more commonly found in older and larger institutions. To
qualify for clinical trials involving a new surgical procedure, hospitals and surgeons need to have both experience in
the procedure and a history of low mortality rates.
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of sites with “similar” observed characteristics also have “similar” treatment effects, formally by

assuming that τ is a Lipschitz function (with respect to the Euclidean norm) with known constant

C. We formally state this assumption in Section 2.4. It is not innocuous, but we will argue that it

can be replaced by other continuity-like conditions (such as Hölder continuity) while maintaining

the main message of the paper.2 We let LipC(Rd) denote the space of all Lipschitz functions from

Rd to R with constant C.

2.2 Statistical Model for the Site Selection Problem

As in Gechter et al. (2024), the policy maker must choose a strict subset of experimental sites

S ⊂ SE.
3 In this paper, we focus on the case in which there is a restriction on the total number of

experimental sites that the policy maker can select. That is, there is an integer k ∈ N, k < card(SE),

such that S must belong to the set

A(k) := {S ⊂ SE | card(S ) ≤ k}. (1)

What we have in mind with this restriction is that the policy maker may not have enough

administrative resources to run more than k experiments to evaluate the policy of interest. Our

notation also allows for the possibility that the policy maker does not want to experiment at all.

If the policy maker decides to experiment in a nonempty set S ∈ A(k) of cardinality card(S ) ≤
k, then she will observe card(S ) treatment effect estimates. We collect these estimates in a vector

of dimension card(S ). In a slight abuse of notation, let S1 < S2 < . . . < Scard(S ) denote the

indices of the card(S ) experimental sites in S . Letting τ̂s denote the estimated treatment effect

in site s, we can define the vector

τ̂S := (τ̂S1 , . . . , τ̂Scard(S )
)⊤. (2)

Analogously, we can denote the vector of true treatment effects for the experimental sites in S as

τS := (τ(XS1), . . . , τ(XScard(S )
))⊤. (3)

2In Section 6.3, we discuss how our results extend to other functional classes that could be used to restrict
treatment effect heterogeneity, such as collections of functions that belong to a convex and centrosymmetric space.
Such restrictions were recently used in the econometrics literature to analyze estimation, inference, and other decision
problems that arise in a nonparametric regression setup (Yata, 2021; Armstrong and Kolesár, 2018).

3We require S to be a strict subset of SE because if we allow the policy maker to experiment in all sites, and
there is no cost of experimentation that varies at the site level, then there is no site selection problem. We consider
the case in which S is allowed to equal SE in Section 6.1.
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We assume that the treatment effect estimators obtained in each site are normally (and indepen-

dently) distributed around the vector of true effects:

τ̂S ∼ Ncard(S ) (τS , ΣS ) , where ΣS := diag(σ2
S1
, . . . , σ2

Scard(S )
). (4)

Following Gechter et al. (2024), treat ΣS as known.

The normality assumption in (4) is unlikely to hold exactly; however, it is common to assume

that treatment effect estimates from randomized controlled trials are asymptotically normal with

asymptotic variances that can be estimated consistently. Treating the limiting normal model as an

exact finite-sample statistical model then eases exposition and allows us to focus on the core features

of the site selection problem. Indeed, working directly with such a limiting model is common in

applications of statistical decision theory to econometrics; see Müller (2011) and the references

therein for theoretical support and applications in the context of testing problems and Ishihara and

Kitagawa (2021), Stoye (2012), or Tetenov (2012) for precedents in closely related work. Gechter

et al. (2024) use the same statistical model, but our parameter space has a more specific form as

treatment effects are controlled by the Lipschitz function τ .

After observing τ̂S , the policy maker chooses an action as ∈ [0, 1] at each policy-relevant site

s ∈ SP . We interpret this action as the proportion of a population in the site that will be randomly

assigned to the new policy. Thus, as = 1 means that everyone in site s is exposed to the new policy,

and as = 0 means that the status quo at the site is preserved. Under this interpretation, as = .5

means that 50% of the population at site s will be exposed at random to the new policy; however,

the formal development equally applies to either individual or population-level randomization. Our

interpretation abstracts from integer issues arising with small populations.

Thus, we can define a treatment rule T as a (measurable) function T : Rcard(S ) → [0, 1]card(SP )

that maps experimental outcomes to (possibly) randomized policy actions in each of the policy-

relevant sites. It will be sometimes convenient to use Ts(·) to denote the specific treatment rule for

site s ∈ SP implied by T and TS to denote the set of all treatment rules. Note that we index the

treatment rules by the selected experimental sites, S , to be explicit about the fact that the data

used to inform policy will vary depending on the choice of S . We call T ∈ TS nonrandomized if

for every s ∈ SP we have Ts(z) ∈ {0, 1} for (Lebesgue) almost every z ∈ Rcard(S ). Otherwise, we

say that the rule is randomized. We will focus on decision rules that belong to the set

T 1/2
S :=

{
T ∈ TS | for any diagonal matrix Σ, and ∀s ∈ SP ,E[Ts(U)] = 1/2, U ∼ Ncard(S )(0,Σ)

}
.

These are treatment rules in which the ex-ante probability of implementing the policy is 50%
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whenever the true treatment effects at the sites experimented on are zero. For the moment, and for

the sake of exposition, we assume that there is no cost of experimentation. While this assumption

is clearly unrealistic, we later show that the main conclusions of our analysis are robust to adding

fixed costs to the objective function of the k-median problem.

2.3 Welfare and Regret

Let #SP := card(SP ). We assume that the welfare of a decision rule T , given that sites S are

selected for experimentation, corresponds to the average expected welfare across policy-relevant

sites:

W(T,S , τ) :=
1

#SP

∑
s∈SP

τ(Xs)EτS
[Ts(τ̂S )], (5)

where EτS
[Ts(τ̂S )] means that the expectation is taken assuming τ̂S ∼ Ncard(S )(τS ,ΣS ), and τ(Xs)

is the true treatment effect at site s.

The regret of policy (T,S ) can then be shown to equal

R(T,S , τ) :=
1

#SP

∑
s∈SP

τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[Ts(τ̂S )]) . (6)

Our focus will be on finding the purposive sampling scheme that minimizes worst-case regret.

Definition 1 (MMR optimal purposive sampling scheme and treatment rule). The pair (T ∗,S ∗) ∈
T 1/2

S ×A(k) is minimax-regret (MMR) optimal among all purposive sampling schemes and treatment

rules if

sup
τ∈LipC(Rd)

R(T ∗,S ∗, τ) = inf
S∈A(k),T∈T 1/2

S

sup
τ∈LipC(Rd)

R(T,S , τ). (7)

Remark 1. In the standard definition of minimax-regret optimality, it is common to allow the

decision maker to select randomized decision rules. Definition 1 implies an asymmetric treatment

of randomization: While we allow the policy maker to randomize policy implementation choices,

we are restricting her to pick the experimental sites in a deterministic fashion. The nonrandom

selection of experimental sites—referred to broadly in the literature as purposive sampling (Cook

et al., 2002, p. 511)—is common in practice; see the discussion about purposive sampling in Egami

and Lee (2024). In Section 6, we discuss the challenges we encountered in trying to allow for the

random selection of experimental sites.
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Remark 2. It will sometimes be convenient to rewrite the right-hand side of (7) as

inf
S∈A(k)

(
inf

T∈T 1/2
S

sup
τ∈LipC(Rd)

R(T,S , τ)

)
.

This suggests that, conceptually, the solutions of the minimax-regret problem can be done in two

steps. First, one can analyze the problem of policy implementation given the experimental outcomes

at sites S . Then, one can optimize over the sites where to experiment.

This distinction is helpful because the first step is related to the “evidence aggregation” problem

analyzed in Ishihara and Kitagawa (2021). As mentioned in the Introduction, we can leverage recent

results in Yata (2021) and Montiel Olea et al. (2023) to better understand the minimax-regret

solutions to this problem. A key difference from Ishihara and Kitagawa (2021) is that we typically

have more than one policy-relevant site.

2.4 Main Assumptions

Wemake the following assumptions. To begin, treatment effects vary continuously with the site-level

covariates:

Assumption 1. τ is a Lipschitz function (with respect to the Euclidean norm) with known constant

C. That is, for any x, x′ ∈ Rd, |τ(x)− τ(x′)| ≤ C∥x− x′∥, where ∥ · ∥ denotes the Euclidean norm.

We also impose a regularity condition on site-level covariates. That is, we assume that all

observed covariates are different:

Assumption 2. Xs ̸= Xs′ ∀ s, s′ ∈ S.

Even if this were not the case in raw data, one would presumably want to induce it by adding site

fixed effects.4

Finally, for each policy site s ∈ SP and every S ∈ A(k), denote by NS (s) ∈ S its nearest

neighbor in S (or the nearest neighbor with the smallest index in case of multiplicity). That is, for

every s ∈ SP :

∥Xs −XNS (s)∥ ≤ ∥Xs −Xs′∥ ∀s′ ∈ S .

4In section 6.3, we discuss how Assumption 1 can be modified to accommodate other general distance measures,
as well as some forms of unobserved treatment heterogeneity (for which Assumption 2 may be dropped).
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3 Main Result

This section presents our main result: The problem of finding the purposive sampling scheme

that minimizes the worst-case regret is approximately equal—and sometimes equal—to solving a

k-median problem.

In order to derive this, first recall the definition of the k-median problem.

Definition 2 (k-median problem). We say that a purposive sampling scheme, S ∈ A(k), solves

the k-median problem if it solves

inf
S∈A(k)

∑
s∈SP

∥Xs −XNS (s)∥. (8)

In Definition 2, the policy-relevant sites (with indexes in SP ) are clients and the experimental

sites (with indexes in SE) are facilities. The connection cost between a facility i and a client j

is the Euclidean distance ∥Xj − Xi∥. Since the goal of the k-median problem is to choose the k

facilities that minimize connection cost, each client s ∈ SP gets connected to the facility that is

closest among those in S . Hence, the term XNS (s) appears in Definition 2. Finally, Equation (8)

can be also written as

inf
S∈A(k)

 ∑
s∈SP∩S

∥Xs −XNS (s)∥+
∑

s∈SP \S

∥Xs −XNS (s)∥

 = inf
S∈A(k)

∑
s∈SP \S

∥Xs −XNS (s)∥, (9)

where the equality follows from the fact that for each facility s ∈ SP that is also a client s ∈ S ,

connection cost becomes zero.

There is no scope for interesting analysis, or indeed for justification of experiments, unless noise

in the signal is bounded. Therefore, define C∗ := max
S∈A(k),s∈SP \S

{√
π
2

σNS (s)∥∥∥Xs−XNS (s)

∥∥∥
}

< ∞. Let σE

denote the largest standard deviation among the potential experimental sites. Our main theorem

is the following:

Theorem 1. Suppose Assumptions 1-2 hold. If C > C∗, then for any S ∈ A(k):

∣∣∣∣∣
(

inf
T∈T 1/2

S

sup
τ∈LipC(Rd)

R(T,S , τ)

)
− C

2

1

#SP

·

 ∑
s∈SP \S

∥Xs −XNS (s)∥

∣∣∣∣∣ (10)

is at most

B · σE · min{#(SE ∩ SP ) , k}
#SP

, (11)

10



where B ≡ argmaxz≥0 zΦ(−z).

Proof. Follows directly from Lemma 1 and 2 below.

Remark 3. The left-hand expression in (10), i.e., inf
T∈T 1/2

S
supτ∈LipC(Rd) R(T,S , τ), is the worst-case

regret of the purposive sampling scheme S assuming optimality of subsequent treatment choice TS .

Theorem 1 thus shows that the (optimized) worst-case regret of any purposive sampling scheme can

be uniformly approximated (after scaling by the factor C/(2#SP )) by the objective function of the

k-median problem in Definition 2—which is equivalent to the objective function of the problem in

the right-hand side of Equation (9).

Remark 4. When the candidate sites for experimentation (SE) and the policy-relevant sites (SP )

are disjoint, then for any S ∈ A(k):

(
inf

T∈T 1/2
S

sup
τ∈LipC(Rd)

R(T,S , τ)

)
=

C

2

1

#SP

·

 ∑
s∈SP \S

∥Xs −XNS (s)∥

 . (12)

Consequently, any solution of the k-median problem is a fortiori an exact minimax-regret solution

for the site selection problem. This follows from the fact that if a purposive sampling scheme, S ∗,

minimizes the right-hand side of Equation (12), then it will automatically minimize the left-hand

side, which, by Remark 2, defines a minimax-regret optimal purposive sampling scheme.

Remark 5. Theorem 1 implies that even in the case where SE ∩ SP ̸= ∅,∣∣∣∣∣ inf
S∈A(k)

(
inf

T∈T 1/2
S

sup
τ∈LipC(Rd)

R(T,S , τ)

)
− C

2

1

#SP

· inf
S∈A(k)

 ∑
s∈SP \S

∥Xs −XNS (s)∥

∣∣∣∣∣ (13)

is at most equal to (11). Thus, the quality of this approximation improves as either the number

of policy-relevant sites increases or the potential experiments conducted become more precise (σE

becomes smaller). The approximation deteriorates as k increases. This happens because in approx-

imating the worst-case regret of a purposive sampling scheme, we ignored the regret associated with

sites selected for experimentation; we further discuss this below when we explain Lemma 1. This

means that, as k increases, more sites will be ignored in our approximation and the upper bound

will become looser.

Remark 6. The tight connection to the k-median problem relies on the Lipschitz constant to be large

enough. In other words, the k-median problem only has a decision-theoretic justification when the

treatment effect heterogeneity across sites accommodated in the parameter space is substantial.
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The proof of Theorem 1 follows from the two Lemmas below, which bound the site selection

problem’s minimax-regret value from above and below, respectively.

Lemma 1 (Upper bound). Suppose Assumptions 1-2 hold. For every S ∈ A(k), there exists a

constant C(S ) such that, if C > C(S ), then

inf
T∈T 1/2

S

sup
τ∈LipC(Rd)

R(T,S , τ) ≤

(
B

#SP

∑
s∈S∩SP

σs

)
+

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 , (14)

where B ≡ argmaxz≥0 zΦ(−z).

Proof. See Appendix A.1.

Remark 7. Lemma 1 implies that the minimax-regret value of the site selection problem in Definition

1 can be upper bounded by the solution of the uncapacitated k-facility location problem.5 Just as

in the k-median problem, there is a set of facilities F and a set of clients (or cities) C. Now we

assume that there is an opening cost ci ∈ R+ associated with each facility i ∈ F . The connection

cost between facilities and clients is as before. The goal is to open at most k facilities and connect

each client to one facility so that total cost is minimized. Thus, the problem

inf
S∈A(k)

( B

#SP

∑
s∈S∩SP

σs

)
+

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 (15)

can be viewed as a k-facility location problem. Just as before, the set of facilities is SE and the set

of clients is SP . The connection cost between sites s ∈ SE and s′ ∈ Sp is (C/(2#SP ))∥Xs −Xs′∥.
The opening cost for any facility s ∈ SE is (B/#SP )σs. Minimizing the upper bound in Lemma 1

is thus equivalent to solving the k-facility location problem. As shown in Appendix A.1, the upper

bound arises by bounding the worst-case sum of regrets across sites by the corresponding sum of

worst-case regrets. For selected sites that are both facilities and clients, the worst-case regret is

obtained by solving a point-identified treatment choice problem. For policy-relevant sites where

no experiment was conducted, it is obtained by solving the partially-identified treatment choice

problem in Ishihara and Kitagawa (2021). When SE and SP are disjoint, the first component of

the upper bound vanishes, and the bound becomes proportional to the solution of the k-median

problem.

5Uncapacitated means that there is no capacity constraint on the number of clients that each facility can accom-
modate. See (Williamson and Shmoys, 2011, Chapter 4.5) and Zhang (2007).
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Lemma 2 (Lower bound). Suppose Assumptions 1-2 hold. For every S ∈ A(k):

inf
T∈T 1/2

S

sup
τ∈LipC(Rd)

R(T,S , τ) ≥

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 . (16)

Proof. See Appendix A.2.

Remark 8. Lemma 2 implies that the minimax-regret value of the site selection problem in Definition

1 can be lower bounded by the solution of the k-median problem:

inf
S∈A(k)

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 . (17)

Theorem 1 thus follows by noting that the upper and lower bound match up to the opening costs

of the facilities. As noted before, the lower and upper bound match when SE ∩ SP = ∅.

Remark 9. While the computation of an exact minimax-regret sampling scheme (whether purposive

or randomized) appears intractable, our ability to provide nontrivial upper bounds on worst-case

regret does not hinge on C being large enough. Indeed, one could always compute such a bound by

(i) forcing the treatment decision Ts to only depend on site NS (s) and (ii) computing worst-case

expected regret separately across sites, ignoring that the regret-maximizing parameter configura-

tions may be mutually inconsistent across sites. Both manipulations increase regret and therefore

define an upper bound. This bound is easy to compute for any given sampling scheme because the

induced minimax-regret treatment choice problem was solved in Stoye (2012). For C large enough,

it will coincide with the bound in Theorem 1. The caveat is that this bound is nonlinear; hence,

while it is easy to compute once, it does not generate a tight connection to the k-median problem

and will be hard to optimize for large instances of the site selection problem.
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4 Integer Programming and the k-median Problem

It is well known (Williamson and Shmoys, 2011, Chapter 7.7, p. 185) that the k-median problem

in (17) can be formulated as the following linear integer program:

min
{yi,xi,j}i∈SE,j∈SP

∑
i∈SE ,j∈SP

xi,j · c(j, i) (18)

such that
∑
i∈SE

xi,j = 1, ∀j ∈ SP , (19)∑
i∈SE

yi ≤ k, (20)

0 ≤ xi,j ≤ yi, i ∈ SE, j ∈ SP , (21)

yi ∈ {0, 1}, xi,j ∈ {0, 1}, i ∈ SE, j ∈ SP . (22)

In this formulation, the choice variables are the {0, 1}-valued variables yi and xi,j, for i ∈ SE, j ∈ SP .

The variable yi indicates whether site i is chosen for experimentation, and xi,j indicates whether

experimental site i is the nearest neighbor of policy site j. The total number of sites chosen for

experimentation is restricted to be no greater than k, and site i can only be the nearest neighbor of

policy site j if site i is chosen for experimentation. The connection cost between a facility i and a

client j—denoted c(j, i)—is given by ∥Xi −Xj∥.6 It is worth highlighting that the program above

is linear in the choice variables xi,j and yi.

A major advantage of the integer programming formulation of the k-median problem is that most

ecosystems for scientific computing offer different solvers for linear and nonlinear integer programs.

For the applications in this paper, we use the MIP solver in Gurobi (Gurobi Optimization, LLC,

2023) through the Python package gurobipy. The Gurobi software is highly optimized, especially

for large-scale problems, and it offers an academic license. Even though the scale of the applications

presented in Section 5 is not large enough for the efficiency advantages of Gurobi to become salient

over other solvers, we wanted to showcase its ease of use. It also integrates seamlessly with Google

Colab, providing us a way to build self-contained and reproducible examples.7

The MIP solver uses a version of the branch-and-bound algorithm; see Bertsimas and Weismantel

(2005), Chapter 11.1, for a general description of this algorithm. Broadly speaking, this algorithm

works by first finding the solution to the linear programming (LP) relaxation of the original integer

6The connection cost in the objective function of the integer program differs from the connection cost in the k-
median problem in (17) by a constant factor C/(2#SP ), which does not affect the solution of the k-median problem.
Solving the linear integer program described above is equivalent to solving (17).

7https://colab.research.google.com/
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problem. This is known as the relaxation step. Then, the problem is split into two sub-problems

(branching), according to the integer constraints on the solution. This method then gives bounds

on the integer solution, and the algorithm is applied recursively until the lower bound and the

upper bound converge up to a tolerance parameter. The recursion creates nodes, and there are

some strategies to determine which nodes should be explored further; for example, nodes that have

integer solutions do not require any more branching.

Gurobi implements several additional steps that help the branch-and-bound algorithm be more

efficient.8 The presolve step reduces the number of effective constraints of the problem by checking

if the integer requirement can eliminate some of them. As the name suggests, it is performed before

the start of the branch-and-bound algorithm. Cutting planes tightens the feasible region by adding

linear inequalities to eliminate fractional solutions; it is performed during the branch-and-bound

process, and for this reason the algorithm used by Gurobi can be referred to as a version of a

“branch-and-cut” algorithm. Finally, the MIP solver implements several heuristics, for example by

rounding the component of a solution that is closest to an integer, fixing it, and hoping the other

components will converge to integers quicker.

In principle, one can always solve the k-median problem in (17) by enumerating all possible size

k subsets of SE. Such an algorithm runs in time proportional to(
#SE

k

)
·#SP · k · d

time and therefore scales poorly when the term “#SE choose k” is large. However, we are able

to evaluate the performance of our preferred solver by brute-force solving smaller but not trivial

instances of the problem, notably the entire application in Section 5.2.

Figure 9 in Appendix B.1 shows an example of the output obtained after using the MIP solver

in Gurobi to solve the linear integer program for the application in Section 5.2. In this example,

the scale of the problem is given by #SE = #SP = 15, k = 6, and d = 8. We defer the details of

the application to Section 5.2.

While we do not use it in this paper, we finally note that there is a large literature studying effi-

cient (polynomial-time) approximation algorithms for the k-median problem, going back to seminal

work of Charikar, Guha, Tardos, and Shmoys (2002). A basic idea in these algorithms is to con-

sider a linear programming relaxation of the integer program associated with the k-median problem

(Williamson and Shmoys, 2011, Chapter 7.7). Even though the scale of the problems analyzed in

this paper does not require the implementation of any of these algorithms, there are several pa-

8See https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/.
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pers that present theoretical performance guarantees for them; see for example Cohen-Addad et al.

(2022) and also the references in Cohen-Addad et al. (2018). Finally, it is worth mentioning that

when k is fixed (and not viewed as part of the problem’s input), there is an approximate algorithm

that runs in time proportional to n · d; see Kumar, Sabharwal, and Sen (2010). Such an algorithm

could be useful when n and d are large and k is small.

5 Applications

5.1 Mobile Financial Services in Bangladesh

Lee, Morduch, Ravindran, Shonchoy, and Zaman (2021) conducted a randomized controlled trial in

Bangladesh to estimate the effects of encouraging rural households to receive money transfers from

migrant family members. They specifically conducted an encouragement design where poor rural

households with family members who had migrated to a larger urban destination receive a 30–45

minute training about how to register and use the mobile banking service “bKash” to send instant

remittances back home.

The experiment was conducted in the Gaibandha district, one of Bangladesh’s poorest regions.

It focused on households that had migrant workers in the Dhaka district, the administrative unit

in which the capital of Bangladesh is located. Lee et al. (2021) measure several outcomes of both

receiving households and sender migrants; see their Figures 3 and 4. To give a concrete example of

the measured outcomes, one question of interest is whether families that adopt the mobile banking

technology are more (or less) likely to declare that the monga—the seasonal period of hunger in

September through November—was not a problem for their household. Table 9, Column 7, p. 61

in Lee et al. (2021) presents results for this specific variable showing that households that used a

bKash account in the treatment group are 9.2 percentage points more likely to declare that monga

was not a problem.

We ask: Do the findings in Lee et al. (2021) generalize to other migration corridors, i.e., com-

binations of origin and destination districts, in Bangladesh? Is the corridor selected by Lee et al.

(2021) a good choice for a researcher who is concerned about external validity? Following Gechter

et al. (2024), we name the corridors using a destination-origin format; for example, the migration

corridor studied in Lee et al. (2021) is “Dhaka-Gaibandha”. Figure 1 displays this corridor along

with other common ones. The 41 migration corridors analyzed in Gechter et al. (2024) are depicted

as dotted lines connecting an origin and a destination.9

9We thank Michael Gechter for gracefully sharing part of the dataset used in Gechter et al. (2024).
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Figure 1: Bangladesh Migration Corridors

Notes: The map of Bangladesh with the origins of the migration corridors marked as light blue dots and the

destinations marked as dark blue stars. Following the terminology used in Gechter et al. (2024), origin refers to a

worker’s home, and destination refers to where the worker migrates for work. The corridor where the experiment

was originally implemented in Lee et al. (2021), Dhaka-Gaibandha, is highlighted in yellow.

In Lee et al.’s 2021 words, “[t]he particular nature of our sample potentially limits the external

validity” of the analysis. In short, migration corridors differ in characteristics ranging from the

distance between the origin and the destination to the cost of living and the average wages. Figure

2 presents a box plot of d = 13 (standardized) characteristics that Gechter et al. (2024) collected

for each of the 41 migration corridors. We take these corridors to be our potential experimental and

policy-relevant sites. That is, SE = SP , and card(SE) = card(SP ) = 41. Below we present results

for k ∈ {1, 2}.
Selected Site when k = 1: When k = 1, the selected site based on the k-median problem

is Dhaka-Pabna. This is also the solution obtained by using the synthetic purposive sampling
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(a) k-median (b) Egami and Lee (2024) and Gechter et al. (2024)

Figure 2: Solution of the k-median Problem (k = 1) and Distribution of Site-Level Covariates

Notes: For each covariate, the box represents the interquartile range (IQR), the vertical black line represents the

median, and the horizontal line shows the “theoretical minimum” (defined as Q1 − 1.5IQR) and “theoretical max-

imum” (defined as Q3 + 1.5IQR). Black dots are outliers, defined as observations that fall beyond the theoretical

minimum and maximum. Each panel depicts the sites selected by the different approaches when k = 1.

approach (henceforth, SPS) in Egami and Lee (2024).

Figure 2a presents a visual comparison of the covariates of Dhaka-Pabna (blue circles) and

Dhaka-Gaibandha (pink diamonds), the original site selected by Lee et al. (2021). The covariate

values for Dhaka-Gaibandha are slightly outside the interquartile range for at least three covariates:

migrant density, mean remittance, and mean household size. In comparison, all but one covariate

value for Dhaka-Pabna are within the interquartile range. The figure also shows that two key

covariates of Dhaka-Gaibandha are right at the edges of the interquartile range: distance between

sites in the corridor (3rd quartile) and mean household income (1st quartile). One might conjecture

that the effects of adopting a mobile banking technology to transfer money particularly depend

on distance and household incomes, suggesting that the Dhaka-Gaibandha corridor may not be

the most representative.10 Interestingly, Dhaka-Pabna has opposite features: the distance between

destination and origin in this corridor is short (1st quartile) and households are relatively better off

in terms of income (3rd quartile). The use of the minimax criterion might explain why a corridor

with these characteristics may be a good choice for extrapolating experimental results.

Figure 2b also presents the covariates of Dhaka-Noakhali (yellow triangles), the migration cor-

ridor selected by the Bayesian approach of Gechter et al. (2024).11 We note that for 10 out of the

10Gechter et al. (2024) suggest that these qualities could explain the large treatment effects found by Lee et al.
(2021).

11By construction, the solution of Gechter et al. (2024) depends on the choice of prior. The results herein reported
are based on their preferred prior specification; see Section 5.3 p.p.23 in Gechter et al. (2024).
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13 variables that control treatment effect heterogeneity, Dhaka-Noakhali has covariates that are

typically outside the interquartile range.

Selected Sites when k = 2: When k = 2, the k-median solution is to pick Dhaka-Pabna

and Dhaka-Pirojpur. The former also solved the k-median problem for k = 1.

Figure 3a presents the covariates of Dhaka-Pabna (filled, blue circle) and Dhaka-Pirojpur (hol-

low, blue circle). While four covariate values of Dhaka-Pirojpur (standard deviation of male migrant

wage, standard deviation of household income, price index, and migrant density) are outside the

interquartile range, they still appear more central than Dhaka-Gaibandha and Dhaka-Noakhali.

However, relative to Dhaka-Pabna, the solution for k = 2 adds a considerably less central site;

Figure 4 illustrates that this site is a good nearest neighbor for some sites that would not otherwise

be well matched.

Figure 3b presents the solutions of Egami and Lee (2024) (squares) and Gechter et al. (2024)

(triangles).12 The solution of the k-median problem and synthetic purposive sampling are no longer

the same. We also note that the two sites selected by synthetic purposive sampling differ from the

site selected by this procedure when k = 1.

(a) k-median (b) Egami and Lee (2024) and Gechter et al. (2024)

Figure 3: Solution of the k-median Problem (k = 2) and Distribution of Site-level Covariates

Notes: Box plots for the distribution of covariates among migration corridors, constructed as explained in Figure 2.

Each panel depicts the site selected by the different approaches when k = 2.

Figure 4 presents a simple visualization of optimal connections between sites under different op-

timality criteria. Note that the underlying scatter plots in both panels are the same; they visualize

the location of corridors in (distance, household income)-space. However, Panel 4a indicates which

12Gechter et al. (2024) impose an additional constraint on purposive sampling schemes: they require the two
migration corridors selected for experimentation to have origins in different divisions. We note that both the solutions
of Egami and Lee (2024) and the k-median problem satisfy this constraint as well.
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(a) k-median (b) Egami and Lee (2024)

Figure 4: Optimal Experimental Sites for k = 2 on a Two-dimensional Covariate Plane

Notes: Each point represents a destination-origin migration corridor (site) on the two-dimensional covariate plane,

using two covariates: distance between the two ends of each corridor and average household income in the home

district (where the average is taken over households with a reported migrant). The solutions of each method are

indicated by the shapes of the solid dots. In Panel 4a, blue circles denote policy sites with Dhaka-Pabna as the

nearest neighbor, and orange crosses represent those with Dhaka-Pirojpur as the nearest neighbor. Similarly, in

Panel 4b, blue circles and orange crosses follow the same coding, indicating that these policy sites rely on a single

experimental site for constructing their synthetic control. Additionally, gray cross-circles represent policy sites that

use both experimental sites for their synthetic control.

sites were selected through solving the k-median problem and which of these sites any other site was

matched to, where blue circles represent matches with Dhaka-Pabna and orange crosses represent

matches with Dhaka-Pirojpur. Figure 4a also presents the sites selected by Gechter et al. (2024), i.e.

Dhaka-Magura and Dhaka-Noakhali, both marked with dark blue triangles. They appear close to

the sites selected by the k-median problem, but in terms of that problem’s criterion function, they

only rank 455 among 820 candidate solutions and miss the problem’s optimal value by 17%. Panel

4b similarly visualizes the sites selected by Egami and Lee’s (2024) synthetic purposive sampling

approach, i.e. Dhaka-Gopalganj (orange square) and Dhaka-Barguna (blue square).13 We also visu-

alize how policy sites are matched with experimental sites: Orange crosses correspond to migration

corridors that assign all of their weight to Dhaka-Gopalganj; blue circles correspond to migration

corridors that assign all of their weight to Dhaka-Barguna; all other sites (gray crossed circles)

assign strictly positive weights to both donor sites. This illustrates that these sampling schemes

13We generated this figure by using Egami and Lee’s (2024) code on Gechter et al.’s (2024) data.
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meaningfully differ. This would even be true if the synthetic purposive sampling approach were

implemented but forcing degenerate (single donor) matches, because Egami and Lee’s (2024) ap-

proach would then reduce to a k-mean problem, i.e. using squared Euclidean distance as connection

cost.

Computational Costs: The above examples are small enough so that the k-median problem

could easily be solved by brute-force enumeration of 41 and 820 candidate solutions, respectively.

Needless to say, such an approach would not scale—for example, in this same application, k = 10

induces 1, 121, 099, 408 candidate solutions.

Indeed, Figure 5a compares time to solve the k-median problem for k ∈ {1, . . . , 10} using a) the

integer program formulation of the k-median problem in Section 4 and b) brute-force enumeration.

The MIP solver in Gurobi solves all instances of the problem to provable optimality in less than one

second each. In contrast, brute-force enumeration takes approximately 5 hours for k = 10.14

One potential benefit of brute-force enumeration is that one can check for multiple solutions,

which actually occurred at k = 6. In Gurobi, an ad hoc search could be conducted by modifying

the random number seed or using the concurrent optimizer, but discovery would not be guaranteed.

Figure 5b reports the time needed to implement the synthetic purposive sampling approach

of Egami and Lee (2024). This was done by using the spsR package with the option to use the

Gurobi solver on the background. We consider it to be fast, taking less than 40 seconds for k = 10.

However, the synthetic purposive sampling problem can be formulated as a quadratic mixed integer

program, while k-median is linear. This is evident from the graph; the k-median problem is solved

almost instantly for every k up to 10.

5.2 Multi-Country Survey Experiments in Europe

Our second application revisits a multi-country survey experiment originally conducted and ana-

lyzed in Naumann, F. Stöetzer, and Pietrantuono (2018) and discussed in Egami and Lee (2024).

The question of interest is whether native-born inhabitants of a particular country are more sup-

portive of immigration depending on whether the potential migrants are high-skilled or low-skilled.

Naumann et al. (2018) carried out a survey experiment in 15 European countries: Austria, Belgium,

Czech Republic, Denmark, Finland, France, Germany, Ireland, Netherlands, Norway, Slovenia,

Spain, Sweden, Switzerland, and the United Kingdom. Respondents were native-born individuals

and were randomly assigned to report their attitudes towards either high-skilled (“treatment”) or

14This was run in a Windows XPS with 10 cores and 32GB of RAM using R. The code is parallelized, and to avoid
memory issues when k > 8, it runs a C++ function in the background to evaluate one combination at a time. This
ensures that we are giving brute-force enumeration the best chance of success.
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(a) Integer Program vs. Enumeration (b) Integer Program vs. SPS

Figure 5: Time Needed to Solve the k-median Problem k ∈ {1, . . . 10}

Notes: Time comparison of different purposive sampling approaches. Time (vertical axis) is in minutes. The dark,

blue line with circles represents the time it takes to solve the integer program in Section 4 using the MIP solver in

Gurobi to provable optimality (Gurobi gives the solution in less than a second). The light, blue line with squares

in Panel a) represents the time it takes to solve the k-median problem using brute-force enumeration. The red line

with triangles in Panel b) represents the time needed to implement the synthetic purposive sampling approach using

the spsR package.

low-skilled (“control”) immigrants.

While the experiments have already been conducted and outcomes of each experiment are avail-

able for all countries, we consider the situation of a researcher that can only conduct k = 6 exper-

iments; here the choice of k = 6 mirrors Egami and Lee (2024). We let all 15 countries be both

potential experimental and policy-relevant sites. That is, SE = SP , and card(SE) = card(SP ) =

15. 15

The only data needed to solve the k-median problem are site-level covariates of both experimental

and policy-relevant sites. We use the same covariates as Egami and Lee (2024).16 They are in

15A potential situation we have in mind is one of a researcher who would like to give policy advice to the policy
makers in these countries on whether to initiate an immigration reform that could favor either high-skilled or low-
skilled immigrants. The researcher knows that policy makers are interested in voters’ attitudes towards these types
of reforms. We assume that the researcher is only able to experiment in a subset of countries due to administrative
or budget constraints, and that he/she needs to extrapolate voters’ attitudes of the other policy-relevant sites based
on the experimental estimates. The researcher needs to decide whether to recommend the implementation of an
immigration reform directed to either high-skilled or low-skilled immigrants.

16These are: Gross Domestic Product (GDP), size of migrant population, unemployment rate, proportion of
females, mean age, mean education, baseline level of support for immigration by the general public, and a categorical
variable that indicates the subregions in Europe (i.e., South, North, East, and West). The covariate data can be
accessed in the open-source software R package, spsR.
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different scales: For example, GDP is measured in 2015 U.S. dollars, while the unemployment rate

is reported in percentage points. As is commonly recommended in clustering problems and also

done in Egami and Lee (2024), we standardize all of them.

When k = 6, the k-median problem is solved by the Czech Republic, Denmark, France, Ireland,

Spain, and Switzerland. Figure 6 visualizes the distribution of standardized covariates, along with

the sites selected by both the k-median and the synthetic purposive sampling approach. Four of the

six selected sites are common to both approaches (Czech Republic, Denmark, Spain, Switzerland),

but synthetic purposive sampling chooses Germany and the Netherlands instead of France and

Ireland.

(a) k-median (b) Egami and Lee (2024)

Figure 6: Distribution of Site-level Covariates in The Multi-Country Survey Experiment (k = 6)

Notes: Box plots showing the distribution of covariates among the fifteen countries. The box plots are constructed

as explained in Figure 2. Each panel depicts the site selected by the different approaches when k = 6. Solid shapes

indicate sites that are in both the solution of the k-median problem and the synthetic purposive sampling approach.

Hollow shapes indicate solutions that differ across methods.

Figure 7 visualizes the connection networks induced by the different solutions. In both panels,

red circles represent countries that are selected for experimentation. The gray lines in Figure 7

indicate the connections between the experimental sites and the policy-relevant sites that were not

selected for experimentation (blue circles). For example, we can see that each policy-relevant site

is connected to exactly one experimental site, i.e. its nearest neighbor; for example, the United

Kingdom uses only the information of France. The connection network in Figure 7b is consid-

erably more dense, with all policy-relevant sites connected to more than one experimental site.

For instance, the synthetic experiment for United Kingdom assigns positive weights to the Czech

Republic, Netherlands, and Germany. To further aid the visual interpretation of the connection

network, we color each connection differently to capture its strength. For example, for the United
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Kingdom, the strongest connection is to the Netherlands (0.74), whereas the weakest connection of

the United Kingdom is to the Czech Republic (0.01).

Figure 7a also shows that three selected countries in the k-median problem (Switzerland, Czech

Republic, and Spain) are not connected to any of the other policy-relevant sites. This suggests that

these countries are selected because no other country provides a close enough match for them. In

contrast, in Figure 7b, these countries (Switzerland, Czech Republic, and Spain) receive positive

weights from at least five other countries.

(a) k-median (b) Egami and Lee (2024)

Figure 7: Connection Network for k = 6

Notes: In Panel (7a), a connection between a blue dot and a red dot indicates that the corresponding experimental

site is the nearest neighbor of the policy site. In Panel (7b), each blue dot may be connected to one or multiple red

dots, indicating that the corresponding policy site uses the weighted average of one or more experimental sites to

construct its synthetic control. The width and the transparency of the connection line indicate the weight that each

policy site puts on the connecting experimental site.

Approximation Error in Theorem 1: Because experimental estimates and corresponding

standard errors are available for all 15 countries, we can compute the approximation error in The-

orem 1. Define the relative approximation error of the k-median approximation to minimax regret

as
infS∈A(k)

(
inf

T∈T 1/2
S

supτ∈LipC(Rd) R(T,S , τ)
)

C
2

1
#SP

infS∈A(k)

(∑
s∈SP \S ∥Xs −XNS (s)∥

) . (23)
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Algebraic manipulations shows that this expression is bounded from below by

max

0, 1−
B · σE · min{#(SE∩SP ),k}

#SP

C
2

1
#SP

infS∈A(k)

(∑
s∈SP \S ∥Xs −XNS (s)∥

)
 , (24)

and from above by

1 +
B · σE · min{#(SE∩SP ),k}

#SP

C
2

1
#SP

infS∈A(k)

(∑
s∈SP \S ∥Xs −XNS (s)∥

) , (25)

where B ≡ argmaxz≥0 zΦ(−z). The closer the lower and upper bounds are, the better the k-median

approximation is.

Figure 8 displays these bounds for values of k ∈ {1, . . . , 10}. As k increases, the approximation

becomes worse; as mentioned before, this is driven by ignoring the experimental sites themselves in

bounding regret. In this application, the k-median solution still works relatively well when k = 6,

with a relative error of about ±13%. As k increases to 10, the relative error is about ±50%.17

6 Extensions

6.1 Fixed Costs of Experimentation

We next allow for the possibility that running an experiment in a site s ∈ SE has a fixed cost cs.

This means that the welfare of a decision rule T , given that sites S are selected for experimentation,

corresponds to

Wc(T,S , τ) :=
1

#SP

(∑
s∈SP

τ(Xs)EτS
[Ts(τ̂S )]−

∑
s∈S

cs

)
. (27)

Based on this welfare function, the oracle action for the policy maker is to implement the policy in

any policy-relevant site s for which τ(Xs) ≥ 0. Expected regret of (T,S ) becomes

Rc(T,S , τ) :=
1

#SP

∑
s∈S

cs +
1

#SP

∑
s∈SP

τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[Ts(τ̂S )]) . (28)

17For these computations, we picked C to be the smallest Lipschitz constant needed to capture the heterogeneity
of estimated treatment effects in the data. That is, we pick C as

max
s,s′∈SE∪SP

|τ̂s − τ̂s′ |
∥Xs −Xs′∥

, (26)

where τ̂s denote the estimated treatment effects for site s. It turns out that this C is comfortably “large” in the
sense of Theorem 1. We provide additional details in Appendix B.3.
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Figure 8: Approximation Error of The k-median Solutions

Notes: Approximation error of the k-median problem in terms of lower and upper bound on the fraction of the true

minimax-regret solution over the k-median solution; cf. (23). The Lipschitz constant is chosen to be the smallest

Lipschitz constant that is needed to explain the data; cf. (26).

Under the assumptions of Theorem 1, it is possible to show (by extending Lemma 1 and 2 to account

for the fixed costs of experimentation) that

inf
S∈A(k)

(
inf

T∈T 1/2
S

sup
τ∈LipC(Rd)

Rc(T,S , τ)

)

can be approximated by (C/2#SP ) times

inf
S∈A(k)

∑
s∈S

(
2

C

)
cs +

∑
s∈SP \S

∥Xs −XNS (s)∥

 , (29)

and that the approximation error is the same as the one given in Theorem 1.

The problem in (29) is the metric uncapacitated k-facility location problem that was discussed

in Remark 7. This is a common extension of the k-median problem where there is a fixed cost of
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opening each facility. The problem can also be formulated as a linear integer program, namely

min
{yi,xi,j}i∈SE,j∈SP

(∑
i∈SE

yic
∗
i +

∑
i∈SE ,j∈SP

xi,j · c(j, i)

)
(30)

such that
∑
i∈SE

xi,j = 1, ∀j ∈ SP , (31)∑
i∈SE

yi ≤ k, (32)

0 ≤ xi,j ≤ yi, i ∈ SE, j ∈ SP , (33)

yi ∈ {0, 1}, xi,j ∈ {0, 1}, i ∈ SE, j ∈ SP . (34)

Just as before, the choice variable yi indicates whether facility i is open, and xi,j indicates whether

client j is assigned to facility i. Constraints are imposed to ensure that each client j is assigned to

at least one facility, that there are no more than k facilities in total, and that a client can only be

assigned to an open facility. The connection cost between a facility i and a client j is still given

by ∥Xi − Xj∥, but now there is a fixed cost of opening a facility i given by c∗i ≡ 2ci/C. This

means that—in contrast to the case in which there is no fixed cost—choosing the optimal sites to

maximize external validity now requires knowledge of the Lipschitz constant C (as this constant

appears explicitly on the fixed cost c∗i ). This is simply because, as we have shown, the scale of regret

absent costs of experimentation depends on C. Consequently, every time a new site is considered

for experimentation, there is a trade-off between its contribution to reduce regret and the fixed cost

of experimentation. We note that when C is large, the fixed costs in the objective function become

negligible, and the solution of the uncapacitated facility location problem can be approximated by

the solution of the k-median problem.

6.2 Random Selection of Experimental Sites

So far, our analysis focused on minimizing the worst-case (welfare-based) regret among all purposive

sampling schemes that select at most k sites. That is, we excluded randomized (including nonuni-

formly randomized) sampling schemes. This is an important limitation—a widespread view among

experimenters is that “the external validity of randomized evaluations for a given population (say,

the population of a country) would be maximized by randomly selecting sites and, within these

sites, by randomly selecting treatment and comparison groups” (Duflo et al., 2007, p. 3953).

We now extend our baseline framework (which excludes fixed costs of experimentation) to allow

for randomized site selection. First, we note that whether randomization is potentially desired

27



delicately depends on the decision-theoretic setup. For example, the optimal sampling scheme in

the Bayesian setting of Gechter et al. (2024) will typically be purposive. Whether randomization

improves minimax regret depends on how exactly the decision problem is formulated, which can be

related to what we refer to as the timing assumptions in an implicit game that the decision maker

plays against a malicious “nature”. We will first clarify this observation and then provide a brief

illustration of randomized solutions.

To formalize the discussion, let M denote the cardinality of A(k). Let ∆ (A(k)) denote the set

of all probability distributions over the M elements of A(k). We define a randomized site selection

as a probability distribution p := (p1, . . . , pM) ∈ ∆(A(k)). The econometrician will pick a subset

from the experimental sites by drawing one realization of a distribution p∗ ∈ ∆(A(k)) that she

specified. Denote the randomly selected sites by S ∗.

In our setting, whether the decision maker will want to randomize crucially depends on timing

assumptions; that is, the moment in the game in which nature can move to harm the decision maker.

Consider first the case in which an adversarial nature may harm the policy maker by choosing τ

only after seeing the realization of S ∗ (and knowing TS ∗). Then, the risk of using treatment rule

T ∈ TS ∗ is

R(T,S ∗, τ),

and the worst-case payoff becomes

sup
τ∈LipC(Rd)

R(T,S ∗, τ).

The minimax problem faced by the econometrician after S ∗ has been realized is:

V (S ∗) := inf
T∈TS∗

sup
τ∈LipC(Rd)

R(T,S ∗, τ).

With slight abuse of notation, let p(S ∗) denote the probability of choosing S ∗ at random under

p ∈ ∆(A(k)). The (ex ante) expected payoff of any randomized site selection is∑
S ∗∈A(k)

p(S ∗) · V (S ∗),

and the optimal randomized site selection solves

inf
p∈∆(A(k))

 ∑
S ∗∈A(k)

p(S ∗) · V (S ∗)

 .
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But this problem is solved by any p supported on argminS V (S ), the set of purposive sampling

schemes that solve the site selection problem. If that problem’s solution is unique, the policy maker

will never randomize under this timing of the game. Furthermore, this “sequential” timing may

feel natural in applications that we have in mind.

That said, the timing that seems more in line with Wald’s (1950) original application of the

minimax principle is likely one in which the policy maker commits to both a randomized sampling

scheme and a set of contingent (on sampling scheme) decision rules and nature adversarially picks

τ before any randomization was realized. We next briefly discuss this possibility.

To see that randomization might strictly speaking be optimal, consider a stylized example where

k = 1 and the covariates of each site are equal to its index: SE = {1, 4}, and SP = {2, 3}. For

simplicity, suppose furthermore that τ̂s = τs, i.e. there is no sampling uncertainty in the treatment

effects. This example can be solved for those combinations of sampling scheme and treatment

assignment rule that achieve exact MMR. As we formally show in Appendix B.2, the exact MMR

attainable by purposive sampling equals 3C/4, whereas the exact MMR with randomized sampling

equals C/2.18 Thus, in principle there can be a gain to randomized sampling.

To see that solving this problem can quickly become very hard, consider now the same example,

except that the experimental sites coincide with the policy sites at {1, 2}. Then we can find the

MMR optimal combination of purposive sampling scheme and treatment assignment rule, and we

can also verify that randomized site selection will strictly reduce worst-case regret. However, we

are unable to characterize the exact solution for this, still extremely structured, case. We leave

further exploration of randomized site selection, including the potentially fruitful investigation of

“good enough” (in terms of regret) such schemes, for future research.

6.3 Other Restrictions on Treatment Heterogeneity

With Assumption 1, the effect of the policy of interest is a Lipschitz function of observed covariates

with respect to the Euclidean distance. This means that the effect of the policy of interest in two

sites with the same covariates is assumed to be the same (in other words, there is no unobserved

treatment effect heterogeneity). In this section, we show that our main result can also accommodate

other general measures of the distance between covariates (thus allowing for other functional classes),

as well as some forms of unobserved treatment effect heterogeneity (provided SE ∩ SP = ∅).
18The assumption of perfect signals is for simplicity. The example is rigged to resemble cases analyzed in Mon-

tiel Olea et al. (2023) and Stoye (2012) and we would accordingly be able to generalize it, but for our present purpose,
solving for arbitrary sampling variances would only add tedium.
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6.3.1 Other Distance Measure Based on Observed Covariates

To see how our results can allow for other types of distances, let m(x, x′) : Rd × Rd → R+ be a

measure of distance (metric) between x, x′ ∈ Rd.19 Then, Assumption 1 may be modified as:

Assumption 3. τ is a Lipschitz function (with respect to metric m(·, ·)) with known constant C.

That is, for any x, x′ ∈ Rd, |τ(x)− τ(x′)| ≤ Cm(x, x′).

For example, m(x, x′) =
(
(x− x′)⊤ (x− x′)

)1/2
is the Euclidean distance in Assumption 1 and

m(x, x′) =
(
(x− x′)⊤W (x− x′)

)1/2
for some positive definite matrixW is aW -weighted Euclidean

distance. Choosing m(x, x′) = [m̃(x, x′)]α for some α ∈ (0, 1) and some distance measure m̃(·, ·) also
effectively allows us to model τ as a Hölder continuous function of order α (Dudley, 2002, p. 56).

With Assumptions 2 and 3, NS (s) is understood to be a nearest neighbor in S measured in terms

of metric m(·, ·) that appears in Assumption 3. Moreover, LipC(Rd) now stands for the space of all

Lipschitz functions from Rd to R with constant C, but in terms of metric m(·, ·). We note that we

are slightly abusing notation, because we are not using m to index the nearest-neighbor function

NS (s) or the Lipschitz functional class LipC(Rd), although their respective definitions explicitly on

the choice of metric m(·, ·). Under a general metric m(·, ·), the k-median problem is simply modified

as:

Definition 3. We say that a purposive sampling scheme, S ∈ A(k), solves the k-median problem

with a metric cost function m(·, ·) if it solves

inf
S∈A(k)

∑
s∈SP

m(Xs, XNS (s)). (35)

Since the proof of Theorem 1 does not rely on any specific property of the Euclidean distance,

the results of Theorem 1 still hold under a general metricm(·, ·), by replacing the Euclidean distance

∥· − ·∥ with m(·, ·).

6.3.2 Unobserved Treatment Heterogeneity

Now, we show how our assumptions can be modified to accommodate some forms of unobserved

treatment heterogeneity. Instead of viewing policy effects as a function of observed covariates X

only, we now model the policy effects at the site level. Specifically, for each s ∈ S, denote by τs ∈ R
the policy effect in site s. Then, instead of viewing τ as a function, we will let τ := (τ1, τ2, ..., τS)

⊤ ∈
19That is, we assume that m(x, x′) > 0 for any x ̸= x′, and that for any x we have m(x, x) = 0. We also assume

that the function is symmetric, in that m(x, x′) = m(x′, x). And finally, we assume that m satisfies the triangle
inequality m(x, x′) ≤ m(x, x′′) +m(x′, x′′) for any x, x′, x′′. Also see Dudley (2002, p.20).
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RS be a vector of dimension S that represents the policy effects of all sites in S. Then, Assumptions

1 and 2 can be replaced with the following:

Assumption 4. For any s, s′ ∈ S, s ̸= s′, τ satisfies:

|τs − τs′ | ≤ Cm(Xs, Xs′) + c, (36)

where C > 0 and c > 0 are both known, and m(·, ·) is a metric.

Assumption 4 allows sites with the same covariates to have different policy effects. The dif-

ference, however, is assumed to be at most c. We motivate Assumption 4 using a simple linear

regression model in Appendix B.4. Denote by FC,c ⊂ RS the collection of all vectors of dimension

RS satisfying (36). For this parameter class, the minimax-regret optimal purposive sampling scheme

and treatment rule are redefined to solve

inf
S∈A(k),T∈T 1/2

S

sup
τ∈FC,c

R(T,S , τ). (37)

It turns out that the purposive sampling scheme that solves (37) can still be approximated by

the solution of the k-median problem in Definition 3 with a different cost function.

To see this, note that the functional class FC,c is still convex and centrosymmetric. Thus, we

can show that, for the evidence aggregation problem studied in Montiel Olea et al. (2023), the

conclusion of their Proposition 1(iii) extends to FC,c as well. Then, under Assumption 4, Lemmas

1 and 2 continue to hold with minor modifications. In particular, when C is large enough (with a

threshold that can be exactly characterized), we have that

inf
T∈T 1/2

S

sup
τ∈FC,c

R(T,S , τ) ≤

(
B

#SP

∑
s∈S∩SP

σs

)
+

 1

#SP

∑
s∈SP \S

Cm(Xs, XNS (s)) + c

2

 .

In addition, the following lower bound can also be verified to hold

inf
T∈T 1/2

S

sup
τ∈FC,c

R(T,S , τ) ≥

 1

#SP

∑
s∈SP \S

Cm(Xs, XNS (s)) + c

2

 .

The two bounds above imply that, even when treatment effect heterogeneity is characterized by

Assumption 4, the optimized value of the minimax problem (37) can still be uniformly approximated

by the following objective function
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inf
S∈A(k)

 1

#SP

∑
s∈SP \S

(
Cm(Xs, XNS (s)) + c

2

) .

When SE ∩ SP = ∅, the solution to the problem above is the same as

inf
S∈A(k)

(
1

#SP

∑
s∈SP

(
Cm(Xs, XNS (s)) + c

2

))
.

This problem is equivalent to the k-median problem in Definition 3, where the connection cost

between sites s and s′ is given by m(Xs, Xs′) (neither C nor c are required as inputs).

7 Conclusion

This paper presented a decision-theoretic justification for viewing the question of how to best choose

where to experiment in order to optimize external validity as a k-median (clustering) problem. More

concretely, we presented conditions under which minimizing the worst-case, welfare-based regret

among all purposive (nonrandomized) schemes that select k sites is approximately equal, and can

be exactly equal, to finding the k most central vectors of baseline site-level covariates.

We believe there are many interesting directions for future work. For example, while we focused

on purposive sampling schemes, it would be interesting to better understand the value of randomized

sampling schemes and whether site-level covariates can be used to design such randomized selection

with an eye on external validity. We also think that discussions around the relation between the k-

median problem and synthetic purposive sampling of Egami and Lee (2024) open interesting research

directions to provide a decision-theoretic justification for the use the synthetic control of Abadie

et al. (2010). Finally, it would be interesting to explore the use of (mixed) integer programming

techniques to solve for the purposive sampling schemes suggested in Egami and Lee (2024) and

Gechter et al. (2024).
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A Proofs of Main Results

A.1 Proof of Lemma 1

Fix the selected sites S , and denote the cardinality of S as card(S ). Let S1 < S2 < . . . < Scard(S )

denote the indices of the card(S ) experimental sites in S . For a given experimental site s ∈ S ,

let τ̂s denote its corresponding treatment effect estimate. Let

τ̂S := (τ̂S1 , . . . , τ̂Scard(S )
)⊤

denote the vector containing the estimates for each experimental site.

For each policy-relevant site, s ∈ SP , recall that NS (s) denotes its nearest neighbor among the

sites S (or the nearest neighbor with the smallest index in case of multiplicity). Partition the

policy-relevant sites as

SP = (S ∩ SP ) ∪ (SP\S ) .

Consider the decision rule, T ∗ ∈ T 1/2
S , that recommends, for each policy-relevant site s ∈ SP and

given data τ̂S , the following action:

i) For s ∈ SP ∩ S ,

T ∗
s (τ̂S ) := 1{τ̂s ≥ 0}.

ii) For s ∈ SP\S , set

T ∗
s (τ̂S ) := Φ

(
τ̂NS (s)

σ̃s

)
,

where

σ̃s :=

√√√√(C∥Xs −XNS (s)∥√
π/2

)2

− σ2
s .

Note that the expression in ii) above is well-defined for every s ∈ SP when C is large enough.

This decision rule is the minimax-regret optimal rule (provided C is large enough) for the evidence

aggregation framework discussed in Yata (2021) and Montiel Olea et al. (2023), both of which build

upon Stoye (2012), and is indeed in T 1/2
S .
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Define C(S ) to be any value of C for which σ̃s > 0 for every s ∈ SP . Note that by definition

of infimum,

inf
T∈TS

sup
τ∈LipC(Rd)

R(T,S , τ) ≤ sup
τ∈LipC(Rd)

R(T ∗,S , τ),

≤ 1

#SP

∑
s∈SP

sup
τ∈LipC(Rd)

(τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[T ∗

s (τ̂S )])) ,

where the second inequality follows from the fact that

R(T,S , τ) :=
1

#SP

∑
s∈SP

τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[Ts(τ̂S )]) .

It is a well-known result (and can be verified by algebra) that for any s ∈ S ∩ SP ,

sup
τ∈LipC(Rd)

(τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[T ∗

s (τ̂S )])) = Bσs, (38)

where B ≡ argmaxz≥0 zΦ(−z).

Moreover, it follows from (Montiel Olea et al., 2023, Proposition 1 (iii) and its proof) that

if C > max
s∈SP \S

{√
π
2

σNS (s)∥∥∥Xs−XNS (s)

∥∥∥
}

:= C(S ), where σNS (s)
denotes the standard deviation of the

nearest neighbor estimate in S for site s ∈ SP\S , it holds that for any s ∈ SP\S :

sup
τ∈LipC(Rd)

(τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[T ∗

s (τ̂S )])) =
C

2
∥Xs −XNS (s)∥. (39)

Equations (38)-(39) imply:

inf
T∈T 1/2

S

sup
τ∈LipC(Rd)

R(T,S , τ) ≤

(
B

#SP

∑
s∈S∩SP

σs

)
+

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 . (40)

A.2 Proof of Lemma 2

Fix the selected sites S , and denote the cardinality of S as card(S ). Let S1 < S2 < . . . < Scard(S )

denote the indices of the card(S ) experimental sites in S . For any X ∈ Rd, define XNS
to be

the element in {XS1 , . . . , XScard(S )
} that is closest to X in terms of ∥ · ∥ (if there is more than one

closest element, pick the X associated to the smallest index). The proof has three parts.
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Part I: Consider the function τ ∗ : Rd → R such that:

τ ∗(X) = C∥X −XNS
∥.

We start by showing that the function τ ∗ is Lipschitz with constant C. To see this, consider three

cases:

Case 1: Suppose first that X,X ′ ∈ {XS1 , . . . , XScard(S )
}. In this case, we trivially have

|τ ∗(X)− τ ∗(X ′)| = 0 ≤ C∥X −X ′∥.

Case 2: Suppose now that X /∈ {XS1 , . . . , XScard(S )
}, but X ′ ∈ {XS1 , . . . , XScard(S )

}. In this

case,

|τ ∗(X)− τ ∗(X ′)| = C∥X −XNS
∥ ≤ C∥X −X ′∥,

where the last inequality follows by the definition ofXNS
and the fact thatX ′ ∈ {XS1 , . . . , XScard(S )

}.
Case 3: Finally, take X,X ′ /∈ {XS1 , . . . , XScard(S )

}. In this case,

|τ ∗(X)− τ ∗(X ′)| = C|∥X −XNS
∥ − ∥X ′ −X ′

NS
∥|.

Without loss of generality, assume that ∥X −XNS
∥ ≥ ∥X ′ −X ′

NS
∥. Then,

|τ ∗(X)− τ ∗(X ′)| = C
(
∥X −XNS

∥ − ∥X ′ −X ′
NS

∥
)

≤ C
(
∥X −X ′

NS
∥ − ∥X ′ −X ′

NS
∥
)

= C
(
∥X −X ′ +X ′ −X ′

NS
∥ − ∥X ′ −X ′

NS
∥
)

≤ C∥X −X ′∥,

where the first inequality uses the definition ofXNS
, and the last display uses the triangle inequality.

We conclude that τ ∗ is a Lipschitz function with constant C, which means it is included in our

parameter space.

Part II: Since τ ∗ ∈ LipC(Rd), then for any treatment rule T :

sup
τ∈LipC(Rd)

R(T,S , τ) ≥ R(T,S , τ ∗). (41)
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Moreover, by definition,

R(T,S , τ) :=
1

#SP

∑
s∈SP

τ(Xs) (1{τ(Xs) ≥ 0} − EτS
[Ts(τ̂S )]) .

Since τ ∗(Xs) = 0 for all s ∈ SP ∩ S , we have that

R(T,S , τ ∗) =
1

#SP

∑
s∈SP \S

τ ∗(Xs)
(
1{τ ∗(Xs) ≥ 0} − Eτ∗S

[Ts(τ̂S )]
)
,

=
1

#SP

∑
s∈SP \S

C∥Xs −XNS (s)∥ (1− E0[Ts(τ̂S )]) , (42)

where the last line uses the definition of τ ∗. Equations (41) and (42) thus imply that for any

T ∈ T 1/2
S :

sup
τ∈LipC(Rd)

R(T,S , τ) ≥

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 . (43)

Part III: Equation (43) implies

inf
T∈T 1/2

S

sup
τ∈LipC(Rd)

R(T,S , τ) ≥

C

2

1

#SP

∑
s∈SP \S

∥Xs −XNS (s)∥

 .
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B Supplemental Appendix

B.1 Gurobi’s Output

In this section, we discuss some parameters in the Gurobi optimizer that can be tuned to improve

its performance.20 First, MIPFocus specifies, on a high level, whether the solution should prioritize

speed or optimality. The default value of this parameter is 0, which achieves a balance between

searching for new solutions and proving optimality of the current solution. We set this parameter

to 2, prioritizing finding good-quality and optimal solutions. A second set of important parameters

affect how the solver terminates. There are two termination choices for MIP models: 1) a restriction

on the runtime of the algorithm, such as using TimeLimit to limit the wall-clock runtime, and 2)

controlling the optimality gap, by setting a parameter MIPGap that stops the algorithm when the

relative gap between the best-known solution and the best known bound on the solution objective is

less than the specified value. In this application, we let the runtime to be the default value (infinity)

and set the tolerance level to 10−6. In Figure 9, the Gurobi solver outputs not only the solution

and the optimal value of the problem but also the output gap. In this example, we can see that the

gap between bounds is 0, demonstrating that the k-median problem has been solved to provable

optimality. An interesting feature of using the integer programming formulation of the k-median

problem is that even when we are not able to solve the problem to provable optimality, the optimality

gap provides a suboptimality guarantee for the obtained solution. Finally, the output reports the

algorithm’s runtime, which was only 0.05 seconds for this example. There are more parameters one

can tune to control the root relaxation, the aggressiveness of the cutting plane strategies and the

level of presolve, tolerance parameters for primal feasibility, the integer feasibility, and more. For

the applications in this paper, we let the rest of the parameters be the default.

B.2 Exact Statement and Proof of Result Discussed in Section 6.2

Consider the following specialization of our setting: d = 1 and therefore X ∈ R, SE = {1, 4},
SP = {2, 3}, and for all sites we just have Xs = s. (Intuitively, we consider 4 sites lined up

equidistantly on a straight line, where the middle two sites are the policy sites.) Suppose furthermore

that sampling distributions of signals are degenerate; formally, τ̂s = τs := τ(Xs) for all s.

Lemma 3. Under this section’s additional assumptions (see paragraph immediately above):

1. If sampling schemes may randomize, the lowest regret achievable by any combination of sam-

pling scheme and treatment rule equals C/2.

20For more specifics, see https://www.gurobi.com/documentation/current/refman/mip_models.html.
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Figure 9: Gurobi Output

Notes: An example output from the MIP solver in Gurobi using the multi-country experiment for k = 6. See details

of the application in Section 5.2.

2. If sampling has to be purposive (nonrandomized), the lowest regret achievable in combination

with any treatment rule equals 3C/4.

Proof. To see claim 1, consider the distribution under which (τ1, τ2, τ3, τ4) is uniformly distributed

over {(0, C, C, 0), (0,−C,−C, 0)}. Then the experimental sites do not yield any information, and

no sampling and decision rule can improve on tossing a coin, in which case expected regret equals

C/2. We conclude that the MMR value of this decision problem is at least C/2.

Next, suppose the policy maker uniformly randomizes over S ⊂ {1, 4} for experimentation and

then implements the new policy with probability a2 = a3 = [(C + τ̂S )/2C]10; here, the notation

[X]10 := min{max{X, 0}, 1} indicates clamping of X to [0, 1]. We will show that the worst-case

expected regret under this scheme is C/2, which therefore is the problem’s MMR value and is
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attained by this rule.

Careful book-keeping reveals that the policy maker’s worst-case expected regret equals

max
(τ1,τ2,τ3,τ4):

|τs−τt|≤C|s−t|

1

2
(τ+2 + τ+3 ) ·

1

2

([
C − τ1
2C

]1
0

+

[
C − τ4
2C

]1
0

)
+
1

2
(τ−2 + τ−3 ) ·

1

2

([
C + τ1
2C

]1
0

+

[
C + τ4
2C

]1
0

)
.

We will solve this by considering subcases. Suppose first that τ2 and τ3 have different signs. Since

both objective and constraints are invariant under multiplying (τ1, τ2, τ3, τ4) by −1, suppose without

further loss of generality that τ2 ≥ 0 ≥ τ3. The optimization problem now simplifies to

max
(τ1,τ2,τ3,τ4):

|τs−τt|≤C|s−t|

|τ2|
4

([
C − τ1
2C

]1
0

+

[
C − τ4
2C

]1
0

)
︸ ︷︷ ︸

≡B∈[0,2]

+
|τ3|
4

([
C + τ1
2C

]1
0

+

[
C + τ4
2C

]1
0

)
︸ ︷︷ ︸

=2−B

≤ max{|τ2|, |τ3|}
2

≤ C

2
,

where the first inequality is justified in the display and the second one follows because τ2 and τ3

have different signs but differ by at most C.

Now let τ2 and τ3 have the same sign, which we take without further loss of generality to be

positive. Then we initially observe simplification to

max
(τ1,τ2,τ3,τ4):

|τs−τt|≤C|s−t|

1

4
(τ2 + τ3)

([
C − τ1
2C

]1
0

+

[
C − τ4
2C

]1
0

)
,

and we can furthermore concentrate out τ1 = τ2 − C, τ4 = τ3 − C to get

max
(τ2,τ3):

|τ2−τ3|≤C

1

4
(τ2 + τ3)

([
2C − τ2

2C

]1
0

+

[
2C − τ3

2C

]1
0

)
.

Clamping of expressions at 1 cannot bind because τ2 and τ3 are positive. If clamping at 0 binds

for both fractions, then the objective equals 0. Suppose clamping at 0 binds for one expression, say

(without further loss of generality) because τ2 > 2C, then we have simplification to

max
(τ2,τ3):

|τ2−τ3|≤C

1

4
(τ2 + τ3)

2C − τ3
2C

.

Keeping in mind that τ2 > 2C and therefore also τ3 > C in this subcase, evaluation of derivatives

shows that this expression decreases in τ3; hence, τ3 = τ2 −C. Substituting this in, one can further

verify the expression to be decreasing in τ2; therefore, the maximal value in this subcase is attained
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at a boundary point also covered by the next case (and, though not essential for the argument, this

value can be verified to be 3C/8).

Finally, if no clamping binds, we can reduce the problem to

max
(τ2,τ3):

|τ2−τ3|≤C

1

4
(τ2 + τ3)

4C − τ2 − τ3
2C

=
C

2
,

where the maximum is attained by setting τ2 + τ3 = 2C.

Regarding claim 2, by the decision problem’s symmetry, it is without further loss of generality

to assume that site 1 is being sampled. MMR is then at least 3C/4 because this value is achieved

if the true parameter values (τ1, τ2, τ3, τ4) are equally likely to be (0, C, 2C, 3C) or −(0, C, 2C, 3C).

We next show that this value is attained by uniformly assigning treatment with probability

a2 = a3 = [(3C − 2τ̂1)/6C]10. Indeed, worst case regret of this decision rule equals

max
(τ1,τ2,τ3,τ4):

|τs−τt|≤C|s−t|

1

2
(τ+2 + τ+3 )

[
3C − 2τ1

6C

]1
0

+
1

2
(τ−2 + τ−3 )

[
3C + 2τ1

6C

]1
0

.

If τ2 and τ3 have different signs, we can bound this value by C/2 just as before. Suppose they have

the same sign, which we take to be positive without further loss of generality, then the problem

simplifies to

max
(τ1,τ2,τ3,τ4):

|τs−τt|≤C|s−t|

1

2
(τ2 + τ3)

[
3C − 2τ1

6C

]1
0

= max
τ1

1

2
(2τ1 + 3C)

[
3C − 2τ1

6C

]1
0

=
3C

4
.

Here, the first equality concentrates out τ2 = τ1 +C and τ3 = τ2 +C; the second equality uses that

clamping cannot bind (clamping at 0 would set the expression to 0, clamping at 1 would imply that

τ2 < 0), after which the problem is straightforwardly solved by τ1 = 0.

B.3 Additional Analysis of the Survey Experiment

As mentioned in Section 5, we can obtain experimental estimates of all fifteen countries using the

original experiments conducted in Naumann et al. (2018). Generally, experimental estimates of all

policy sites are unknown and unattainable in most real-world applications; otherwise, there is no

need to solve the site selection problem. However, as an illustrative example, we will leverage the

information in these experiments to quantify the magnitude of the Lipschitz constant C needed

to explain the treatment heterogeneity in the data and the constant C(S ) in the assumption of
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Lemma 1 that gives the result of this paper.

The outcome of interest from the survey is a categorical variable indicating survey respondents’

attitudes towards immigrants: 1 for Allow None; 2 for Allow A Few; 3 for Allow Some; 4 for Allow

Many. For a more straightforward interpretation, we redefine the outcome variable to be binary:

we let the outcome of the survey respondent be 1 if she answers 3 or 4, indicating “support”;

otherwise, we let her outcome be 0, indicating “oppose.” The treatment is also a binary variable,

which equals 1 (0) if the survey is about high-skilled (low-skilled) immigrants. We use a simple

difference-in-means estimator to estimate the treatment effect of each country. The table below

shows the point estimates and their standard errors. The point estimates speak to the difference

between the percentage of people who support high-skilled immigrants and the percentage of people

who support low-skilled immigrants. For example, 25.8% more survey respondents in Austria are

more supportive of high-skilled immigrants, compared to low-skilled immigrants.

Table 1: Experimental Estimates of Each Country

Country Estimate Standard Error
Austria 0.258906 0.026490
Belgium 0.232145 0.024740
Switzerland 0.285371 0.027139
Czechia 0.222865 0.019601
Germany 0.339650 0.016396
Denmark 0.293745 0.025156
Spain 0.265763 0.022948
Finland 0.403363 0.020222
France 0.275320 0.022045
United Kingdom 0.407362 0.022651
Ireland 0.238961 0.020889
Netherlands 0.301243 0.022853
Norway 0.262747 0.025613
Sweden 0.149249 0.019271
Slovenia 0.301862 0.025517

Notes: This table presents the experimental estimates of the treatment effect of the policy in each country. The orig-

inal outcome from the survey is a categorical variable indicating survey respondents’ attitudes towards immigrants:

1 for Allow None; 2 for Allow A Few; 3 for Allow Some; 4 for Allow Many. We redefine the outcome variable to be

binary: we let the outcome of the survey respondent be 1 if she answers 3 or 4, indicating “support”; otherwise, we

let her outcome be 0, indicating “oppose.” The treatment is also a binary variable, which equals 1 (0) if the survey is

about high-skilled (low-skilled) immigrants. We use a simple difference-in-means estimator to estimate the treatment

effect of each country and their standard error.

In Figure 10a, each point represents a pair of two countries, and the slope from the origin to each

point represents the smallest Lipschitz constant needed to explain the data observed for these two

countries. Hence, the Lipschitz constant C that is able to explain the treatment effect heterogeneity

45



in the data for all countries is at least

max

{
|τ̂(Xi)− τ̂(Xj)|

∥Xi −Xj∥

}
, ∀i, j ∈ SE ∪ SP , (44)

which equals 0.0892 and corresponds to the slope of the red dashed line in Figure 10. The pair of

countries that give the maximum of equation 44 is Finland and Sweden. Additionally, Montiel Olea

et al. (2023) show that, for each possible set of experimental sites S , the C(S ) that gives the

solution in Lemma 1 is defined as

C(S ) := max
s∈SP \S


√

π

2

σNS (s)∥∥∥Xs −XNS (s)

∥∥∥
 . (45)

Replacing σNS (s)
with the corresponding estimated standard errors, we get C(S ) equals 0.0233,

which corresponds to the slope of the blue dashed line in figure 10a. Both the numbers and the plot

indicate the smallest Lipschitz constant C needed to explain the data is bigger than the largest lower

bound of C(S ) that gives the nearest neighbor result. Additionally, Figure 10b shows a histogram of

C(S ) for all possible S , and the red dashed line is the smallest Lipschitz constant compatible with

data. By visual inspection, we can conclude that, in this application, the assumption C > C(S ) is

likely to hold. It is worth pointing out that this assumption is in general not testable because the

experimental estimates of all policy sites are unknown and we cannot compute C(S ).

B.4 A Simple Example that Motivates Assumption 4

In this section, we provide a simple linear regression example to motivate Assumption 4. Suppose

the effect of the status-quo is known in all sites and normalized to zero. For each site s ∈ S, we
have a random sample of ns units in the experiment. Let Yi,s be the outcome under the policy of

interest for unit i ∈ {1, ..., ns}. We assume that Yi,s is generated as follows:

Yi,s = βXi,s + γZi,s + εi,s,

whereXi,s ∈ R is the observed unit-level covariate for individual i in site s, Zi,s ∈ R is the unobserved

unit-level covariate, εi,s ∼ N (0, σ2
ε,s) is an error term with σ2

ε,s > 0 and is also independent of

(Xi,s, Zi,s), and β, γ ∈ R are the same across different sites. For simplicity, suppose that Xi,s and

Zi,s are jointly normal: (Xi,s, Zi,s)
⊤ ∼ N (µs, Σs), where µs ∈ R2 and Σs is a 2× 2 positive-definite

covariance matrix.

Let Ȳs := 1
ns

∑ns

i=1 Yi,s be the sample average of the observed outcome at site s, and X̄s :=
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(a) The C Compatible with Data and C(S ) (b) Histogram of C(S )

Figure 10: Lipschitz Constant C and C(S )

Notes: The dots in Panel 10a represent all possible pairs among the 15 countries. The slope of each point connecting

to the origin represents the value of the Lipschitz constant needed to explain the estimated treatment effects and

site-level covariates observed for that pair of countries. The red dash line is the smallest C that is needed to explain

all the data, computed using equation 44. The slope of the blue dashed line represents C(S ), computed using 45.

Panel 10b presents a histogram of C(S ) for all possible choices of experimental sites S . The red dashed line is the

smallest Lipschitz constant needed to explain the data, corresponding to the same red dashed line in panel 10a.

1
ns

∑ns

i=1 Xi,s, Z̄s := 1
ns

∑ns

i=1 Zi,s be the observed and unobserved site-level aggregate covariates,

respectively. Under the above assumptions and conditional on observed site-level aggregate covariate

X̄s, we have

Ȳs | X̄s ∼ N (βX̄s + γE[Z̄s|X̄s], σ
2
s), (46)

where E[Z̄s|X̄s] is the expectation of Z̄s conditional X̄s, and σ2
s > 0. Then, Assumption 4 models a

case for which the policy effect of interest is

τs := βX̄s + γE[Z̄s|X̄s], ∀s ∈ S.

Furthermore, (46) implies that, conditional on X̄s, we have an unbiased and normal estimator for

τs. We may also calculate that E[Z̄s|X̄s] = αs for some αs that depends on each site s. Then, for

s, s′ ∈ S, s ̸= s′, we have:

τs − τs′ = β
(
X̄s − X̄s′

)
+ γ (αs − αs′) , (47)

implying that |τs − τs′ | can be bounded as in Assumption 4 for some positive C and c, as long as
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we are willing to assume that β, γ are bounded, and that |αs − αs′| are bounded uniformly among

all s, s′ ∈ S.
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1 Introduction

A policy maker must decide between implementing a new policy or preserving the status quo. Her
data provide information about the potential benefits of these two options. Unfortunately, these
data only partially identify payoff-relevant parameters and may therefore not reveal, even in large
samples, the correct course of action. Such treatment choice problems with partial identification
have recently received growing interest; for example, see D’Adamo (2021), Ishihara and Kitagawa
(2021), Yata (2021), Christensen, Moon, and Schorfheide (2022), Kido (2022) or Manski (2024).
Several interesting problems that arise in empirical research can be recast using this framework.
See Montiel Olea, Qiu, and Stoye (2023) and the end of this section for references.

This paper applies the robust Bayes approach—which interpolates between Bayesian and ag-
nostic minimax analyses by evaluating minimax risk over a set of priors—to a class of treatment
choice problems with partial identification. The use of the robust Bayes approach has drawn recent
attention in problems that feature partial identification (Giacomini and Kitagawa, 2021; Giacomini,
Kitagawa, and Read, 2021; Christensen et al., 2022). Indeed, due to partial identification, integrat-
ing Bayesian and minimax elements into decision making can be particularly attractive (see Poirier
1998; Moon and Schorfheide 2012 and references therein).

The robust Bayes approach can be applied ex-ante or ex-post, depending on whether the multiple
priors are used to evaluate payoffs before or after seeing the data.1 These concepts represent two
different ways of resolving model ambiguity and sampling uncertainty, and both have been proposed
to improve Bayesian robustness in decision problems.

By the well-known dynamic consistency of Bayesian decision making, ex-ante and ex-post robust
Bayes coincide with each other—and with standard Bayes optimality—if the set of priors is a
singleton. Indeed, this equivalence is used to calculate Bayes optimal decisions in practice because
ex-post rules are usually computed but ex-ante Bayes optimality is claimed. As pointed out for the
present context by Giacomini et al. (2021), they do not in general agree otherwise.2 This raises
the question: What are the qualitative and quantitative relationships between ex-ante and ex-post
robust Bayes criteria when applied to treatment choice problems with partial identification? In this
paper, we provide an answer to these questions in a general class of treatment choice problems,
using a convenient class of priors.

1Giacomini et al. (2021) discuss both notions; they refer to the ex-ante and ex-post problems as “Gamma-minimax”
and “Conditional Gamma-minimax”, respectively. Christensen et al. (2022) focus on the ex-post problem for treatment
choice problems with partial identification in a restricted class of decision rules.

2For example, for an estimation problem with a quadratic loss, Kitagawa (2012, Appendix B) derives the ex-post
Γ-minimax action and shows that it is not ex-ante Γ-minimax optimal. This example does not apply to the treatment
choice problem with partially-identified welfare, which is the main focus of this paper.
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We use the same framework as Yata (2021) and Montiel Olea et al. (2023) but impose a simple
instance of Giacomini and Kitagawa’s (2021) set of priors, namely a symmetric and uniform two-
point prior for reduced-form parameters and no restriction at all on unidentified parameters given
reduced-form parameters. Working with regret, we formally define ex-ante and ex-post robust
Bayes and, following Berger (1985), label them as “Γ-minimax regret” (Γ-MMR) and “Γ-posterior
expected regret” (Γ-PER).3 We then precisely characterize when these notions coincide and when
they disagree. The main qualitative insights are as follows:

• Ex-ante Γ-MMR and ex-post Γ-PER criteria do not, in general, agree (although they may
sometimes coincide). This conclusion does not hinge on whether or not randomization rules
are allowed. If randomization is permitted, the criteria differ whenever updating the prior
for the reduced-form parameter does not (ex-ante almost surely) resolve ambiguity regarding
the sign of the optimal action. Even if randomization is not allowed, the criteria will disagree
whenever the identification power of the model (in a sense we make precise) is sufficiently
small compared to the informativeness of the data.

• Randomized rules are general solution concepts in both Γ-MMR and Γ-PER problems. That
is, optimal rules often can or even must randomize even if regret is evaluated ex-post. For the
ex-ante Γ MMR problem, whenever the identification power of the model is sufficiently small
compared to the informativeness of the data, (1) infinitely many optimal rules exist, and (2)
many of them are randomized rules. For the ex-post Γ-PER criterion, one might conjecture
by analogy to single-prior Bayes inference that the optimal rules do not randomize. However,
as long as (1) there exists ambiguity regarding the sign of the optimal action at the location of
the two-point prior for the reduced-form parameter and (2) randomized rules are allowed, the
optimal rule is unique and is randomized. Hence, exclusion of randomized rules is with loss
of generality and cannot be justified by simply evaluating regret ex-post—it must come from
other considerations, be the second-order preferences or logistical or convenience concerns.

Our point is not to advocate for either notion of robust Bayes criterion. We also do not aim to
solve for robust Bayes criteria for more general sets of priors as this would get much more involved
but (we suspect) not much more instructive to illustrate the points discussed above. What we hope
to illustrate is when, and how Γ-MMR and Γ-PER criteria differ. We will also relate these results
to timing assumptions in a fictitious game between the policy maker and an adversarial Nature.

3Among others, see Savage (1951), Manski (2004), Stoye (2012b), and Montiel Olea et al. (2023) for justifications
of focusing on regret in treatment choice problems. In particular, while minimax loss can be an attractive alternative
to minimax regret, the aforecited papers find that it leads to trivial recommendations in treatment choice settings;
these findings are easily extended to our example.
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Several auxiliary findings might be of independent interest. First, for Γ-MMR, even if we restrict
the set of decision rules to be a class of non-randomized threshold rules based on the “efficient” linear
index, the optimal threshold is not always zero. Given the apparent symmetry of the problem, we
find this feature rather surprising. Second, whenever the dimension of the signal is larger than 1,
there always exist (regardless of the parameter space and the variance of the signals) non-randomized
linear-index threshold rules (with a threshold equal to zero) that are Γ-MMR optimal (among all
decision rules). This is in stark contrast to Montiel Olea et al. (2023), in which no linear index rule
is globally minimax regret optimal if the degree of partial identification is severe. The intuition is
that the prior much reduces the state space; the signal space then becomes so rich relative to the
state space that even linear threshold rules can effectively mimic randomization.

The literature on treatment choice with partially identified parameter has been growing since
Manski (2004) and Dehejia (2005). For partial identification with known distribution of data,
Manski (2000a, 2005, 2007a) and Stoye (2007) find minimax regret optimal treatment rules. For
finite-sample minimax regret results with model ambiguity and sampling uncertainty, see Stoye
(2012a,b), Yata (2021), Ishihara and Kitagawa (2021) and Montiel Olea et al. (2023); Kido’s (2023)
analysis is asymptotic. Bayes and robust Bayes approaches are analyzed by Chamberlain (2011),
Giacomini and Kitagawa (2021), Giacomini et al. (2021), Christensen et al. (2022), among others.
Earlier investigations of ex-ante and ex-post Γ-minimax estimators include DasGupta and Studden
(1989); Betrò and Ruggeri (1992). Also see Vidakovic (2000) for a review. For different settings
with point-identified welfare, finite- and large-sample results on optimal treatment choice rules
were derived by Canner (1970), Chen and Guggenberger (2024), Hirano and Porter (2009, 2020),
Kitagawa, Lee, and Qiu (2022), Schlag (2006), Stoye (2009), and Tetenov (2012b). There is also a
large literature on optimal policy learning with covariates containing results with point identified
(Bhattacharya and Dupas, 2012; Kitagawa and Tetenov, 2018, 2021; Mbakop and Tabord-Meehan,
2021; Kitagawa and Wang, 2023; Athey and Wager, 2021; Kitagawa, Sakaguchi, and Tetenov, 2021;
Ida, Ishihara, Ito, Kido, Kitagawa, Sakaguchi, and Sasaki, 2022) as well as partially identified
(Kallus and Zhou, 2018; Ben-Michael, Greiner, Imai, and Jiang, 2021; Ben-Michael, Imai, and
Jiang, 2022; D’Adamo, 2021; Christensen et al., 2022; Adjaho and Christensen, 2022; Kido, 2022;
Lei, Sahoo, and Wager, 2023) parameters. Guggenberger, Mehta, and Pavlov (2024) and Manski
and Tetenov (2023) analyze related problems but focus on quantile, as opposed to expected, loss;
Song (2014) considers partial identification but mean squared error regret loss.

The rest of this paper is organized as follows. Section 2 sets up the problem, provides examples,
and defines both versions of robust Bayes optimality. Section 3 contains complete solutions for all
aforementioned scenarios, Section 4 relates them to the “fictitious game” interpretation of minimax
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theory, and Section 5 concludes. Proofs and auxiliary results are collected in the Appendix.

2 Framework

2.1 Actions, Payoffs, Statistical Model, and Decisions

Our setup follows Montiel Olea et al. (2023), who in turn follow Ferguson (1967) and others.
Consider a policy maker who needs to choose an action a ∈ [0, 1] interpreted as probability of
assigning treatment in the target population.4 Her payoff when taking action a ∈ [0, 1] is captured
by the welfare function

W (a, θ) := aW (1, θ) + (1− a)W (0, θ), (2.1)

where θ ∈ Θ is an unknown state of the world or parameter and the functions W (1, · ) : Θ → R and
W (0, · ) : Θ → R are known. Here, we may interpret W (1, θ) and W (0, θ) as the welfare of actions
a = 1 (treating everyone in the population) and action a = 0 (treating no one in the population).
Therefore, (2.1) implies that welfare is linear in actions, a standard assumption in the literature.
Denote by U(θ) := W (1, θ) −W (0, θ) the welfare contrast at θ. If U(θ) were known to the policy
maker, her optimal action would simply be

1 {U(θ) ≥ 0} . (2.2)

Since U(θ) is in fact unknown, the policy maker gathers some empirical evidence to learn about
θ. We assume that she observes a random vector Y ∈ Rn that follows a multivariate normal
distribution:

Y ∼ N(m(θ),Σ), (2.3)

where the function m(· ) : Θ → Rn and the positive definite matrix Σ are known.
Our focus is on the case when the data is not entirely informative about the sign of U(θ): Even

if the policy maker perfectly learned m(θ), she could not (necessarily) pin down the sign of U(θ).
To formally model such treatment choice problems with (decision-relevant) partial identification, let

M := {µ ∈ Rn : m(θ) = µ, θ ∈ Θ} (2.4)
4Randomization could be i.i.d. across future potential treatment recipients, fractional in the sense of randomly

assigning a certain fraction of the treatment population (in this sense, a ∈ [0, 1] can also be interpreted as the
fraction of the population receiving the treatment), or an “all or nothing” randomization for the entire treatment
population. While these might not be practically equivalent in all applications, they are in the current decision
theoretic framework. See Manski and Tetenov (2007) for an exception in the related literature.
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collect all the means of Y that can be generated as θ ranges over Θ. We refer to elements µ ∈ M as
reduced-form parameters because they are identified in the statistical model (2.3) without further
assumptions. Define the identified set for the welfare contrast given µ as

I(µ) := {u ∈ R : U(θ) = u,m(θ) = µ, θ ∈ Θ} (2.5)

and the corresponding upper and lower bounds as

I(µ) := sup I(µ), I(µ) := inf I(µ). (2.6)

Henceforth, when we refer to a treatment choice problem with partial identification, we mean
there exists some open set in M such that for all µ in that open set, I(µ) < 0 < I(µ).

A decision rule d : Rn → [0, 1] is a (measurable) mapping from data Y to the unit interval
[0, 1]. We call d non-randomized if it (almost surely, a.s.) maps into {0, 1}; otherwise, we call d
randomized, including if it randomizes for some but not all data realizations. We use Dn to denote
the set of all decision rules, and we consider decision rules the same if they a.s. agree. As a result,
a rule is unique only up to a.s. agreement. The oracle policy d∗oracle := 1{U(θ) ≥ 0} is of special
interest and for any given θ is contained in Dn, but is not feasible in the statistical sense because
U(θ) is not known.

In general, there will not be an unambiguously best feasible decision rule, a problem that gave
rise to a large literature on different optimality criteria and their implementation. Before introducing
the robust Bayes approach, we give two examples that fit into our general framework.

2.2 Examples

Example 1 (Stoye, 2012a). This example is the one-dimensional version of the general setup and
has been frequently analyzed before (Manski, 2000b; Brock, 2006; Stoye, 2012a; Tetenov, 2012a;
Kitagawa, Lee, and Qiu, 2023). As we will explain below, one motivation for this example is to
think of a policy maker that uses experimental data to choose whether to implement a new policy
in a population of interest, but is concerned about the external validity of the experiment at hand.
The treatment effect of action a = 1 is µ∗ ∈ R, while the effect of action a = 0 is normalized to
0; thus, the policy maker’s expected payoff equals W (a, µ∗) := a · µ∗. The policy maker observes a
realization of the one-dimensional statistic

µ̂ ∼ N(µ, σ2), (2.7)
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where σ > 0 is known and where µ ∈ R is an observable treatment effect, in the sense that µ can be
perfectly pinned down if infinite amount of data is provided. In this example, θ = (µ, µ∗)⊤, Θ ⊆ R2,
m(θ) = µ, and U(θ) = µ∗.

Since the target population and the population from which data (2.7) is collected can be different,
partial identification naturally arises. We assume that the observable and true treatment effects are
constrained by |µ∗ − µ| ≤ k for some known k ≥ 0, implying

I(µ) = [µ− k, µ+ k], I(µ) = µ+ k, I(µ) = µ− k, ∀µ ∈ R.

The goal of the planner is to choose a statistical decision rule d ∈ D1 : R → [0, 1] that maps
observed data (2.7) to an action a ∈ [0, 1] to be applied to the target population. Taking the
normality assumption as an approximation, this stylized example could reflect model uncertainty
(e.g., a treatment effect is estimated in a possibly somewhat misspecified model), external validity
concerns (e.g., a randomized clinical trial was performed on volunteers), or a shift in the environment
(e.g., we transfer estimates from study populations to treatment populations with slightly different
covariates or are concerned about distributional drift over time).

Example 2 (Ishihara and Kitagawa, 2021). This example is taken from Ishihara and Kitagawa’s
(2021; see also Manski (2020)) “evidence aggregation” framework. A policy maker is interested
in implementing a new policy in country i = 0 and observes estimates of the policy’s effect for
countries i = 1, ..., n. Let Y = (Y1, ..., Yn)

⊤ ∈ Rn denote these estimates and let (x0, . . . , xn) be
nonrandom, d-dimensional baseline covariates. The policy maker is willing to extrapolate from her
data by assuming that the welfare contrast of interest equals U(θ) = θ(x0) and that

Y =


Y1

...
Yn

 ∼ N(m(θ),Σ), m(θ) =


θ(x1)

...
θ(xn)

 , Σ = diag(σ2
1, . . . , σ

2
n),

where θ : Rd → R is an unknown Lipschitz function with known constant C. For notational
simplicity, we can further write µi for θ(xi). Thus, Yi ∼ N(µi, σ

2
i ), Y ∼ N(µ,Σ) and U(θ) = µ0.

The policy question is: Given data Y , what proportion of the population in country i = 0 should
be assigned the new policy?

Let ∥β∥ :=
√
β⊤β be the Euclidean norm of a vector β. In this example, the identified set for

the welfare contrast µ0 is

I(µ) = {u ∈ R : |µi − u| ≤ C ∥xi − x0∥ , i = 1, . . . , n}.
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The lower and upper bounds of I(µ) are simply intersection bounds:

I(µ) = max
i=1,...,n

{µi − C ∥xi − x0∥}, I(µ) = min
i=1,...,n

{µi + C ∥xi − x0∥} .

2.3 Robust Bayes Optimality

Our setting up to here is as in Montiel Olea et al. (2023). We now connect it to the robust
Bayes literature by imposing a set of priors Γ on θ. Specifically, for each prior π on θ, let πµ be
the corresponding prior on the point-identified reduced-form parameter µ ∈ M , obtained as the
push-forward measure induced by π and m(·), i.e.,

πµ(A) = π(m−1(A)),∀A ∈ FM ,

where m−1(A) := {θ ∈ Θ : m(θ) ∈ A} and FM denotes the σ−algebra of M . Following Giacomini
and Kitagawa (2021), we choose a particular single proper prior πµ for µ ∈ M but leave the
conditional prior of θ given µ, denoted as πθ|µ, unrestricted except for

πθ|µ{U(θ) ∈ I(µ)} = 1, πµ-a.s. (2.8)

Then, the class of priors Γ consists of all priors on θ induced by the single prior πµ and any
conditional prior πθ|µ that meets (2.8). Intuitively, we choose a single prior on the point-identified
parameter and place no new restriction on the partially identified parameter U(θ). One can pick
any proper prior πµ; for tractability, we let πµ to be supported on two symmetric points {µ̄,−µ̄}
with equal probability, where µ̄ ∈ Rn is chosen by the decision maker. Henceforth, Γ is understood
to refer to the implied set of priors:

Γ :=

{
πθ =

∫
πθ|µdπµ : πµ ∼ unif({−µ̄, µ̄}), πθ|µ satisfies (2.8)

}
. (2.9)

While the set of priors Γ broadly puts us into the “robust Bayes” territory, it still does not pin
down a uniquely best decision rule because the sign of U(θ) can remain ambiguous. Let

L(a, θ) := sup
a′∈[0,1]

W (a′, θ)−W (a, θ) = U(θ) {1{U(θ) ≥ 0} − a}

be the regret of action a ∈ [0, 1]. We will evaluate decision rules d by their expected regret, defined
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as

R(d, θ) := Em(θ)[L(d(Y ), θ)]

= U(θ)
{
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

}
, (2.10)

where for any x ∈ Rn, Ex[·] denotes expectation taken over Y ∼ N(x,Σ).
Even with the set of priors Γ given and the notion of expected regret chosen as the decision

criterion, the robust Bayes literature contains multiple decision criteria that do not in general agree.
The difference lies in when (and how) the expectations regarding the unknown parameter θ ∈ Θ

are taken. For a decision rule d ∈ Dn, let

r(d, π) :=

∫
θ∈Θ

R(d, θ)dπ(θ)

be its Bayes expected regret of under a prior π ∈ Γ. Following Berger (1985, Definition 12, p. 216),
we introduce the first robust Bayes optimality notion.

Definition 1 (Ex-ante Γ-Minimax Regret). A decision rule d∗ ∈ Dn is Γ-minimax regret (henceforth
Γ-MMR) optimal if

sup
π∈Γ

r(d∗, π) = inf
d∈Dn

sup
π∈Γ

r(d, π). (2.11)

An alternative “posterior” robustness notion is also common in Bayesian analysis. For each
action a ∈ [0, 1], define posterior expected regret under prior π (Berger, 1985, Definition 8, p. 159)

ρ(a, πθ|Y ) :=

∫
θ̃∈Θ

L(a, θ̃)dπθ|Y (θ̃),

where πθ|Y is the posterior distribution of θ given prior π and data Y .5 Then we have the following,
alternative optimality criterion (Berger, 1985, Definition 10, p. 205):

Definition 2 (Ex-post Γ-Posterior Expected Regret). A decision rule d∗ ∈ Dn is Γ-posterior expected
regret (henceforth Γ-PER) optimal if

sup
π∈Γ

ρ(d∗(Y ), πθ|Y ) = inf
a∈[0,1]

sup
π∈Γ

ρ(a, πθ|Y ), ∀Y ∈ Rn. (2.12)

5In our setting, information from data Y does not revise the conditional prior πθ|µ (Giacomini and Kitagawa,
2021). For any event A in the σ-algebra of Θ, we therefore have πθ|Y (A) =

∫
πθ|µ(A)dπµ|Y , where πµ|Y is the

posterior distribution of µ given Y .
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If the decision maker’s action space is restricted to {0, 1}, i.e., randomization is not allowed, the
above definition is revised by replacing [0, 1] with {0, 1}.

The labelling of Γ-MMR as “ex-ante” versus Γ-PER as “ex-post” can be related to the timing of
a fictitious game against an adversarial Nature; see Section 4 for additional discussion. If Γ were
a singleton, the criteria would coincide and would also agree with (single-prior) Bayes optimality.
They do not in general agree otherwise. The Γ-PER criterion is often easier to solve and is routinely
employed to quantify posterior robustness of statistical decisions. However, the term “Gamma
minimax” overwhelmingly (and even “robust Bayes” more often than not) refers to Γ-MMR; for
example, see Berger (1985, Section 4.7.6).6

3 Main Results

In this section, we explicitly solve for the two versions of robust Bayes optimality under the set of
priors (2.9). Following Yata (2021), we assume:

Assumption 1. (i) Θ is convex, centrosymmetric (i.e., θ ∈ Θ implies −θ ∈ Θ) and nonempty.

(ii) m(·) and U(·) are linear.

These conditions are restrictive but turn out to encompass many examples of empirical relevance;
see this paper’s introduction and Montiel Olea et al. (2023); Yata (2021) for examples. Under
Assumption 1, we let

I(µ̄) + I(µ̄) > 0

as a normalization.
We say a rule is a linear-index threshold rule if it has the form 1

{
β⊤Y ≥ c

}
for some β ∈ Rn

and c ∈ R. Linear-index threshold rules are nonrandomized. They are of particular interest because
they form a complete class when U(θ) is point-identified (Karlin and Rubin, 1956) and have received
particular attention in the recent literature (Ishihara and Kitagawa, 2021; Montiel Olea et al., 2023).
For both Γ−MMR and Γ-PER, we will clarify when linear-index threshold rules are optimal and
when they are not. For reasons that will become obvious, the following linear-index threshold rule
is of particular interest:

d∗w,0 := d∗w,0(Y ) := 1
{
w⊤Y ≥ 0

}
, w := Σ−1µ̄. (3.1)

6Giacomini, Kitagawa, and Read (2021) discuss both criteria for general loss functions and refer to Definitions 1
and 2 as the “unconditional Γ-minimax” and “conditional Γ-minimax” problems, respectively. For treatment choice
problems with partial identification, Christensen et al. (2022) optimize the Γ-PER criterion, restricting the action
space to be {0, 1}.
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For each vector β ∈ Rn, let ∥β∥Σ :=
√

β⊤Σβ. Thus, ∥w∥Σ=
√
w⊤Σw =

√
µ̄⊤Σ−1µ̄. Denote by Φ(·)

the standard normal c.d.f. and by Φ−1(·) its inverse, i.e. the corresponding quantile function.

3.1 Ex-ante Robust Bayes Optimality

Theorem 1 (Γ-MMR optimal decisions). Consider a treatment choice problem with welfare function
(2.1), statistical model (2.3) and a set of priors (2.9), that satisfies Assumption 1.

(i) If
I(µ̄)

I(µ̄)− I(µ̄)
≥ Φ(∥w∥Σ), (3.2)

then d∗w,0 is uniquely Γ-MMR optimal.

(ii) If
I(µ̄)

I(µ̄)− I(µ̄)
< Φ(∥w∥Σ), (3.3)

then a rule d ∈ Dn attains Γ-MMR if, and only if, it implies

E−µ̄[d
∗(Y )] =

−I(µ̄)

I(µ̄)− I(µ̄)
, (3.4)

Eµ̄[d
∗(Y )] =

I(µ̄)

I(µ̄)− I(µ̄)
. (3.5)

In particular, any rule of the form 1
{
w⊤Y ≥ c

}
for some c ∈ R is not Γ-MMR optimal. The

following rules, and any convex combination of them, are all Γ-MMR optimal:

d∗RT := Φ

(
w⊤Y

σ̃

)
, (3.6)

d∗linear :=


0, w⊤Y < −ρ∗,

w⊤Y+ρ∗

2ρ∗
, −ρ∗ ≤ w⊤Y ≤ ρ∗,

1, w⊤Y > ρ∗,

(3.7)

d∗step :=

1
2
− β∗, w⊤Y < 0,

1
2
+ β∗, w⊤Y ≥ 0,

(3.8)
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where

σ̃ =

√√√√√
 ∥w∥2Σ
Φ−1

(
I(µ̄)

I(µ̄)−I(µ̄)

)
2

− ∥w∥2Σ,

ρ∗ > 0 is unique and solves
∫ 1

0
Φ
(

2ρ∗x−ρ∗−∥w∥2Σ
∥w∥Σ

)
dx = −I(µ̄)

I(µ̄)−I(µ̄)
, and

β∗ =

I(µ̄)

I(µ̄)−I(µ̄)
− 1

2

2Φ (∥w∥Σ)− 1
∈
(
0,

1

2

)
.

(iii) In case (3.3), among linear-index threshold rules of the form 1
{
w⊤Y ≥ c

}
, the optimal thresh-

olds are ±c∗, where

c∗ := ∥w∥2Σ−∥w∥ΣΦ−1

(
I(µ̄)

I(µ̄)− I(µ̄)

)
> 0.

(iv) In case (3.3) and if n > 1, the following linear-index threshold rule is also Γ-MMR optimal:

d∗wt∗ ,0
(Y ) := 1

{
w⊤

t∗Y ≥ 0
}
,

where wt∗ = Σ−1 (t∗µ̄+ (1− t∗)µ̇), µ̇ ̸= 0 is such that µ̇⊤Σ−1µ̄ = 0,

t∗ :=
1

1±
√

(1−s∗)
s∗

∥w∥2Σ
∥Σ−1µ̇∥2Σ

, (3.9)

and

s∗ :=

[
Φ−1

(
I(µ̄)

I(µ̄)−I(µ̄)

)]2
∥w∥2Σ

∈ (0, 1).

Thus, d∗wt∗ ,0
is also optimal among all linear threshold rules.

Theorem 1 reveals that the Γ-MMR rules qualitatively change depending on whether condition
(3.2) is met or not. This condition admits an intuitive interpretation: Up to clamping to the
unit interval (i.e., values outside this interval are mapped to its edges), the left-hand side of (3.2)
equals the unique minimax regret optimal rule for known µ (Manski, 2007b); therefore, it arguably
measures the model’s identification strength. The right-hand side of (3.2) can be interpreted as the
informativeness of the data about which of {−µ̄, µ̄} obtained. Therefore, Theorem 1 says that if
the model’s identification power is sufficiently large compared to the informativeness of the data,
then, the unique Γ-MMR optimal rule is d∗w,0, a non-randomized linear index rule with threshold
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0 that effectively ignores the partial identification issue. In contrast, if the model’s identification
power is small compared to the informativeness of data, there are infinitely many Γ-MMR optimal
rules, all of which satisfy (3.4) and (3.5). Examples include suitably smoothed versions of d∗w,0 like
d∗RT and d∗linear (the functional forms of which showed up in Montiel Olea et al. 2023) as well as d∗step
(which is a new result).

The contrast between these regimes becomes more intuitive upon inspecting the corresponding
least favorable priors. When (3.2) holds, this prior is supported at two points (µ = µ̄, U(θ) = I(µ̄)

versus µ = −µ̄, U(θ) = I(−µ̄)) with equal probability, leading to unique optimal response d∗w,0.
In words, treatment should be assigned to all iff µ = µ̄; inference toward µ and toward U(θ)

effectively coincide. When (3.3) holds, the least favorable prior is supported on four points (µ = µ̄,
U(θ) = I(µ̄); µ = µ̄, U(θ) = I(µ̄); µ = −µ̄, U(θ) = I(−µ̄) and µ = −µ̄, U(θ) = I(−µ̄)),
with a probability profile such that the data are actually uninformative about U(θ). This explains
nonuniqueness and randomization in optimal decision rules.7

In the case when the model’s identification power is small, we encounter several surprising find-
ings. First, despite the problem’s apparent symmetry, d∗w,0 is not optimal even among linear-index
threshold rules that use the index w⊤Y . Instead, Theorem 1(iii) characterizes exactly two optimal
thresholds, one positive and one negative. Second, while the particular linear-index threshold rule
d∗w,0 is not Γ-MMR optimal, in higher dimensional problems (n > 1), there do exist linear-index
threshold rules that are. This finding is in stark contrast to Montiel Olea et al. (2023), who find
that, in a large class of special cases, no linear index threshold rule is MMR optimal. The crucial
difference in settings is that the set of priors much constrains the decision theoretic problem’s state
space; as a result, the signal space is much richer than the state space, and this can be exploited
to mimic randomization without nominally randomizing. Compare Manski’s (2024) abstract obser-
vation that, if a policy maker is not allowed to explicitly randomize, sampling uncertainty can be
beneficial by providing an implicit randomization device. We note that this phenomenon is remini-
scient of classic “purification” results in game theory (Dvoretzky, Wald, and Wolfowitz, 1951; Khan,
Rath, and Sun, 2006).8 In contrast, it is not deeply related to the general intuition that “Bayesians
don’t randomize.”

We next apply Theorem 1 to Example 1 and immediately get the following results.

Corollary 1 (Γ-MMR decisions in Example 1). In Example 1, the following statements are true:
7To be clear, this does not mean that every decision rule becomes optimal. Among other things, rules are still

constrained by what one may want to think of as indifference conditions required for mixed strategy equilibrium in
a fictitious game; see again Section 4.

8We thank Elliot Lipnowski for reminding us of this literature.
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(i) If
µ̄+ k

2k
≥ Φ (µ̄/σ) , (3.10)

then
d∗0(·) := 1{µ̂ ≥ 0}

is the unique Γ-MMR optimal decision rule.

(ii) If (3.10) fails, then a rule d ∈ D1 attains Γ-MMR if, and only if, it implies

E[d(µ̂) | µ = −µ̄] =
−µ̄+ k

2k
, (3.11)

E[d(µ̂) | µ = µ̄] =
µ̄+ k

2k
. (3.12)

In particular, no linear threshold rule is Γ-MMR optimal. The following rules, and any convex
combination of them, are all Γ−MMR optimal:

d∗RT := Φ

(
µ̂

σ̃

)
, (3.13)

d∗linear :=


0, µ̂ < −σ2ρ∗

µ̄
,

µ̄µ̂+σ2ρ∗

2σ2ρ∗
, −σ2ρ∗

µ̄
≤ µ̂ ≤ σ2ρ∗

µ̄
,

1, µ̂ > σ2ρ∗

µ̄
,

(3.14)

d∗step :=


1
2
− µ̄

2k(2Φ( µ̄
σ )−1)

, µ̂ < 0,

1
2
+ µ̄

2k(2Φ( µ̄
σ )−1)

, µ̂ ≥ 0,
(3.15)

where

σ̃ = σ

√√√√[ µ̄

σΦ−1
(
µ̄+k
2k

)]2 − 1,

and ρ∗ > 0 is unique and solves
∫ 1

0
Φ
(

2ρ∗x−ρ∗−(µ̄/σ)2

µ̄/σ

)
dx = −µ̄+k

2k
.

(iii) In case (ii), the best linear threshold rules in terms of Γ-minimax regret are 1{µ̂ ≥ ±c∗},
where

c∗ = µ̄− σΦ−1

(
µ̄+ k

2k

)
.

Note that there is no analog to Theorem 1’s case (iv); indeed, no linear threshold rule is optimal in
case (ii). This is because the scalar nature of the signal Y shuts down the aforementioned purification
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Figure 1: Γ-MMR optimal rules in Example 1
Notes: This figure reports the Γ-MMR optimal rules in Example 1 for various combinations of parameter values. In
the top two panels, the combinations of parameter values satisfy (3.10). Therefore, the unique Γ-MMR optimal rule
is d∗0. In the bottom two panels, (3.10) fails. As a result, d∗0 is no longer Γ-MMR optimal. Instead, d∗RT, d∗linear and
d∗step are all Γ-MMR optimal.
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mechanism. See Figure 1 for an illustration of different Γ-MMR optimal rules in Example 1 for
selected parameter values of k, σ and µ̄.

3.2 Ex-post Robust Bayes Optimality

Theorem 2 (Γ-PER optimal decisions). Suppose all conditions in Theorem 1 hold true. Then:

(i) If I(µ̄) < 0 < I(µ̄), the unique Γ-PER optimal rule is

d∗PER(Y ) =


−I(µ̄)

I(µ̄)−I(µ̄)
, if w⊤Y < 0,

I(µ̄)

I(µ̄)−I(µ̄)
, if w⊤Y ≥ 0.

Otherwise, d∗w,0 is Γ-PER optimal.

(ii) d∗w,0 is always the Γ-PER optimal non-randomized rule.

The results of Theorem 2 offer some important clarifications regarding Γ-PER in treatment
choice problems with partial identification. First, even if regret is evaluated according to the
posterior distribution, it is not necessarily true that optimal rules are non-randomized. In fact,
whenever there is model ambiguity regarding the sign of U(θ) (i.e., I(µ̄) < 0 < I(µ̄)), the unique
Γ-PER optimal rule is randomized. Therefore, restricting the action space to {0, 1} in such problem
is not without loss of generality even under the Γ-PER criterion. Comparing results with Theorem 1
also allows for instructive observations on when Γ-PER and Γ-MMR optimal rules agree or disagree;
we elaborate these in Corollary 3. Applying Theorem 2 to Example 1, we finally obtain:

Corollary 2 (Γ-PER rules in Example 1). In Example 1, the following statements are true:

(i) If µ̄ < k, then Γ-PER is uniquely minimized by

d∗PER(µ̂) =


k+µ̄
2k

if µ̂ ≥ 0

k−µ̄
2k

if µ̂ < 0
.

(ii) If µ̄ ≥ k, then d∗0 is Γ-PER optimal. Furthermore, it is always the Γ-PER optimal threshold
rule.

In Figure 2, we depict Γ-PER optimal rules for Example 1 with the same parameter values
considered in Figure 1. We see clearly that Γ-MMR and -PER optimal rules coincide (if random-
ization is allowed) only in the special case when k ≤ µ̄, an observation we generalize in Corollary
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Figure 2: Γ-PER optimal rules in Example 1
Notes: This figure reports the Γ-PER optimal rules for the same parameter values considered in Figure 1. In the
top left panel, Γ-PER and Γ-MMR optimal rules coincide and are both d∗0. For the rest of the panels, the unique
Γ-PER optimal rules are all d∗PER and are different from any Γ-MMR optimal rules.
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3. More specifically, in the top left panel of Figure 2, as k ≤ µ̄, Γ-MMR and -PER coincide and
are the non-randomized threshold rule d∗0. In the top right panel, k > µ̄ and the Γ-PER optimal
rule becomes d∗PER. However, since (3.10) still holds, d∗0 is still Γ-MMR optimal. For the bottom
two panels, as it still holds k > µ̄, d∗PER is still Γ-PER optimal. However, the associated parameter
values imply (3.10) fails. As a result, d∗0 is no longer Γ-MMR optimal and many Γ-MMR rules exist.
But even in theses cases, Γ-MMR and -PER rules differ, as among the class of step function rules
(which contain d∗PER), only d∗step is Γ-MMR optimal, still different from d∗PER.
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Figure 3: Profiled regret of Γ-PER and other rules in Example 1
Notes: This figure reports the (frequentist) profiled regrets, as a function of the true mean µ of data µ̂, of Γ-PER
rule, Γ-MMR linear rule, and the least randomizing global MMR optimal rule (Montiel Olea et al. 2023) for the
parameter values considered in Montiel Olea et al. (Figure 2, 2023). In the left plot, we see Γ-PER rule is visually
dominated. In both plots, the profiled regret of Γ-MMR linear rule and the least randomizing global MMR optimal
rule look very similar and are essentially overlapping with each other.

Applying Montiel Olea et al. (Theorem 1, 2023) to the current setting, we can conclude that all
rules, including both Γ-MMR and Γ-PER optimal rules, are at least admissible. Therefore, it might
be interesting and more useful to compare the (frequentist) profiled regrets (Montiel Olea et al.
2023) of ex-post Γ-PER and other rules as a function of the true but unknown mean µ of data µ̂.
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In the context of Example 1, we can report R̄(d, µ) := supµ∗∈[µ−k,µ+k] R(d, µ, µ∗) as µ varies for each
rule d, where R(d, µ, µ∗) is the expected regret of rule d as a function of µ and µ∗. Figure 3 gives
a visual illustration. Surprisingly, when µ̄ is small and k large (left plot of Figure 3), the Γ-PER
seems to be dominated in terms of the profiled regret. In fact, we can show that this is indeed
the case whenever µ̄ is sufficiently small and k is sufficiently large (See Lemma D.2 in Appendix D
for an exact statement). Intuitively, the Γ-PER rule mixes between a coin flip rule and the naive
threshold rule (d∗0). When µ̄ is small, Γ-PER rule is more analogous to the coin flip rule, which
can be shown to be dominated in terms of profiled regret in Montiel Olea et al. (2023). Also note
that the profiled regret of Γ-PER rule does not diminish to zero as µ goes to infinity, which may
potentially be an undesirable property. Furthermore, Figure 3 also reveals that the Γ−MMR rule
d∗linear, though not globally MMR optimal, is numerically equivalent to the least randomizing global
MMR optimal rule in some cases, especially when µ̄ is small. This interestingly provides a Robust
Bayes interpretation of the least randomizing global MMR optimal rule derived by Montiel Olea
et al. (2023).

3.3 When Do Ex-ante and Ex-post Agree?

Theorems 1 and 2 clarify to what extent Γ-MMR and Γ-PER criteria yield the same or different
optimal rules. We spell this out in Corollary 3, which considers both cases when randomization is
allowed and not allowed. The bottom line is that the assessment is sensitive to how the problem is
set up. If underlying parameters lead to sufficiently small identification power, the criteria disagree.

Corollary 3. Consider a treatment choice problem with welfare function (2.1) and statistical model
(2.3) that satisfies Assumption 1.

(i) Suppose randomization is allowed. Then the Γ-MMR and Γ-PER optimal rules coincide if,
and only if, I(µ̄) ≥ 0.

(ii) Suppose randomization is not allowed. Then the Γ-MMR and Γ-PER optimal rules coincide
if, and only if,

I(µ̄)

I(µ̄)− I(µ̄)
≥ Φ(∥w∥Σ). (3.16)

Thus, if randomization is allowed, Γ-MMR and Γ-PER optimal rules coincide only in the some-
what trivial case in which we a priori know that U(θ) and µ have the same sign, so that optimal
treatment choice reduces to Bayesian inference on the point identified µ. They disagree in all other
cases, including in settings where there are infinitely many Γ−MMR optimal rules.
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One might conjecture that the two criteria agree more once randomization is excluded; after
all, this leads to a much simpler action space. Part (ii) shows that there is some truth to this:
The condition for agreement changes from I(µ̄) ≥ 0 to the strictly weaker (3.16). However, the
criteria continue to disagree in many cases. It may be instructive to think of these cases in terms
of “comparative statics.” For example, consider holding all parameters of the problem fixed but
scaling the signal variance Σ by a positive scalar, for example to reflect a change in sample size.
Then (3.16) will hold if, and only if, Σ is large enough; hence, as long as I(µ̄) ≥ 0, increasing
sample size will eventually cause disagreement between Γ-MMR and -PER even if randomization
is excluded. Similarly, for fixed Σ, Γ-MMR and -PER rules will always disagree if the model’s
identification power is small enough.

4 Game Theoretic Interpretation

As Wald (1940) was first to discover, it can be instructive to think of minimax decision rules as
equilibrium rules in a fictitious, zero-sum game against Nature. In particular, any equilibrium of
the game in which the decision maker picks a decision rule and an adversarial Nature picks a prior
characterizes a minimax (regret) decision rule and corresponding prior; furthermore, known features
of zero-sum games may allow one to claim uniqueness of the solution and the like.9 While usually
stated for “agnostic” minimax rules, it is easy to see that these facts extend to our setting. They
are liberally used in this paper’s proofs; we here use them to briefly discuss some intuitions and
contrast ex-ante versus ex-post robust Bayes, but also randomization versus no randomization, in
terms of the fictitious game’s timing.

First, this perspective gives further intuition for why MMR rules tend to randomize. Indeed,
nontrivial simultaneous move zero-sum games frequently fail to have pure strategy equilibria, and
that is precisely what happens here. Furthermore, in those cases where optimal decision rules
randomize, the equilibria are “pooling” equilibria in which data are noninformative. This explains
why these rules also tend to be nonunique; what disciplines them is Nature’s best-response condition,
not learning from data in equilibrium. This is also true for some nonrandomized threshold rules
from Theorem 1(iv); these avoid randomization because uninformative features of the data can be
used as randomization device, not because any updating occurs in equilibrium.

Second, ex-ante and ex-post rules can be distinguished in terms of the game being played. In the
ex-ante (and original Waldian) perspective, this game is simultaneous move; in particular, Nature

9See Lehmann and Casella (1998, Theorem 1.4, Chap. 5) for a formal statement. The first explicit use of this
technique in the literature on decisions under partial identification is in Stoye (2007).
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moves before data Y are realized. In the ex-post perspective, Nature sees Y before choosing a prior.
It is immediately clear that this may be easier to solve because it allows for backward induction.
There is also an immediate sense that solutions might not agree, as we indeed found.

Finally, whether the decision maker is allowed to (or at least wants to) randomize or not can
also be thought of as changing the timing of the fictitious game. Specifically, the more standard
perspective is that the decision maker may randomize over decision rules and Nature must move
before learning the outcome of this randomization. This setup will often yield randomized solutions.
In contrast, if Nature is allowed to move after the decision maker’s randomization realized, then
any incentive to randomize is gone and we may as well restrict the action space to {0, 1}. Again,
there is no reason to expect that solutions agree.

5 Conclusion

We studied treatment choice problems that display partial identification through the lens of the
robust Bayes criteria. To do so, we take the general framework of Yata (2021) and others and
embed in it a simple example of the set of priors advocated by Giacomini and Kitagawa (2021).
We describe and contrast (ex-ante) Γ-minimax regret and (ex-post) Γ-posterior expected regret and
analytically derive optimal solutions with and without randomization.

Our results contain two key messages that we think are valuable to the literature. First, with
partial identification and multiple priors, ex-ante and ex-post assessments do not agree in general,
whether or not randomized rules are allowed. This may at first seem expected due to dynamic
inconsistency of multiple prior Bayes criteria, but is actually not obvious in view of the set of prior’s
specific structure. Second, randomization can be optimal in both ex-ante and ex-post problems—it
is with loss of generality to exclude them even when regret is evaluated ex-post. We conjecture,
but leave to future research, that our findings qualitatively extend to more general sets of priors.
The contrast between the results also illustrates a need to better understand the comparative
advantages—whether from a theoretical or practical perspective—of using one criterion over the
other.
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A Proofs of Main Results

We liberally invoke the game theoretic characterization alluded to in Section 4. Thus, proofs will
frequently claim and verify equilibria of the fictitious game. Recall that, from basic facts about
zero-sum games, if a decision rule uniquely best responds to some least favorable prior, it must be
the unique equilibrium rule.

A.1 Proof of Theorem 1

A.1.1 Statement (i)

The expected regret of decision rule d is

R(d, θ) = U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)
, θ ∈ Θ.

Recall that, by the definition of Γ, we have πµ ∼ unif({−µ̄, µ̄}) and, given µ = ±µ̄, πθ|µ(U(θ) ∈
I(µ)) = 1. Therefore, the Bayes expected regret of d under prior π ∈ Γ equals

r(d, π) =
1

2
·
[∫

θ̃∈Θ
U(θ̃)

(
1{U(θ̃) ≥ 0} − Eµ̄[d]

)
dπθ|µ̄(θ̃)

]
+

1

2
·
[∫

θ̃∈Θ
U(θ̃)

(
1{U(θ̃) ≥ 0} − E−µ̄[d]

)
dπθ|−µ̄(θ̃)

]
,

where Eµ̄[d] := Eµ̄[d(Y )], E−µ̄[d] := E−µ̄[d(Y )]. One can easily solve for

sup
π∈Γ

r(d, π) =
1

2
max

{
I(µ̄)(1− Eµ̄[d]),−I(µ̄)Eµ̄[d]

}
+

1

2
max

{
I(−µ̄)(1− E−µ̄[d]),−I(−µ̄)E−µ̄[d]

}
.

The least favorable prior π∗ equals

π∗ =
{
π∗
µ ∼ unif({−µ̄, µ̄}), π∗

θ|µ̄(U(θ) = I(µ̄)) = 1, π∗
θ|−µ̄(U(θ) = I(−µ̄)) = 1

}
. (A.1)

Lemma B.1 shows that the unique Bayes rule against π∗ is

d∗w,0 = 1{w⊤Y ≥ 0}, where w = Σ−1µ̄.
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Lemma B.2 establishes that supπ∈Γ r(d
∗
w,0, π) = r(d∗w,0, π

∗) as long as (3.2) holds true. This estab-
lishes the claim.

A.1.2 Statement (ii)

Step 1 We show that when (3.3) holds, any rule d ∈ Dn is Γ-MMR optimal if

Eµ̄[d] =
I(µ̄)

I(µ̄)− I(µ̄)
, E−µ̄[d] =

−I(µ̄)

I(µ̄)− I(µ̄)
. (A.2)

The least favorable prior π∗ is such that µ ∼ unif({−µ̄, µ̄}), and when µ = µ̄,

U(θ) =

I(µ̄), with probability (w.p.) p1,

I(µ̄), w.p. 1− p1,

where p1 > 0 is such that p1I(µ̄) + (1− p1)I(µ̄) = 0, and when µ = −µ̄,

U(θ) =

I(−µ̄), w.p. p2,

I(−µ̄), w.p. 1− p2,

where p2 is such that p2I(−µ̄) + (1− p2)I(−µ̄) = 0. Lemma B.3 establishes that any decision rule
is Bayes against this prior (intuitively because the data are uninformative), and Lemma B.4 further
shows that, for any rule d that satisfies (A.2), supπ∈Γ r(d, π) = r(d, π∗) obtains. This establishes
the claim.

Step 2 We next verify the “only if” statement. Recall that the least favorable prior π∗ must best
respond to any optimal decision rule, i.e., for any MMR optimal rule d, π∗ must solve

sup
π∈Γ

r(d, π) =
1

2
max

{
I(µ̄)(1− Eµ̄[d]),−I(µ̄)Eµ̄[d]

}
+

1

2
max

{
I(−µ̄)(1− E−µ̄[d]),−I(−µ̄)E−µ̄[d]

}
.

This, however, requires that Nature is indifferent between I(µ̄) and I(µ̄) when µ = µ̄ and similarly
between I(−µ̄) and I(−µ̄) when µ = −µ̄. That is, we must have

I(µ̄)(1− Eµ̄[d]) = −I(µ̄)Eµ̄[d], I(−µ̄)(1− E−µ̄[d]) = −I(−µ̄)E−µ̄[d],

27



which is equivalent to (A.2).

Step 3 We show a rule of form 1
{
w⊤Y ≥ c

}
for some c ∈ R cannot be Γ−MMR optimal when

(3.3) holds. Note w = Σ−1µ̄. Thus,

Eµ[1{w⊤Y ≥ c}] = 1− Φ

(
c− w⊤µ√
w⊤Σw

)
.

Suppose by contradiction that a rule 1
{
w⊤Y ≥ c

}
is optimal, then by statement (ii) we have

1− Φ

(
c− w⊤µ̄√
w⊤Σw

)
=

I(µ̄)

I(µ̄)− I(µ̄)
(A.3)

1− Φ

(
c+ w⊤µ̄√
w⊤Σw

)
=

−I(µ̄)

I(µ̄)− I(µ̄)
. (A.4)

By symmetry, (A.3) and (A.4) can both hold only if c = 0. But (3.3) then implies that

Φ

(
w⊤µ̄√
w⊤Σw

)
= Φ(∥w∥Σ) >

I(µ̄)

I(µ̄)− I(µ̄)
,

so that (A.3) cannot in fact hold when c = 0, a contradiction.

Step 4 We verify that d∗RT, d∗linear and d∗step are all Γ−MMR optimal. Due to symmetry, it suffices
to show that

Eµ̄[d
∗
RT] = Eµ̄[d

∗
linear] = Eµ̄[d

∗
step] =

I(µ̄)

I(µ̄)− I(µ̄)
.

To see Eµ̄[d
∗
RT] =

I(µ̄)

I(µ̄)−I(µ̄)
, consider the random threshold rule 1

{
w⊤Y ≥ ξ

}
, where ξ ∼ N(0, σ̃2)

is independent of Y . As w⊤Y − ξ ∼ N (∥w∥2Σ, ∥w∥2Σ+σ̃2), algebra shows

Eµ̄

[
1
{
w⊤Y ≥ ξ

}]
=

I(µ̄)

I(µ̄)− I(µ̄)

as required. To see Eµ̄[d
∗
linear] =

I(µ̄)

I(µ̄)−I(µ̄)
, let ρ > 0 and

dlinear,ρ :=


0, w⊤Y < −ρ,

w⊤Y+ρ∗

2ρ∗
, −ρ ≤ w⊤Y ≤ ρ,

1, w⊤Y > ρ.
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Applying Lemma B.7 in Montiel Olea et al. (2023) and integration by parts yield

f(ρ) := Eµ̄[dlinear,ρ] = 1−
∫ 1

0

Φ

(
2ρx− ρ− ∥w∥2Σ

∥w∥Σ

)
dx = 1− ∥w∥Σ

2ρ

∫ ρ−∥w∥2Σ
∥w∥Σ

−ρ−∥w∥2
Σ

∥w∥Σ

Φ (t) dt.

Note that limρ↓0 f(ρ) = 1− Φ(−∥w∥Σ) = Φ(∥w∥Σ) > I(µ̄)

I(µ̄)−I(µ̄)
, while L’Hopital’s rule implies

lim
ρ→∞

f(ρ) = 1− 1

2
lim
ρ→∞

{
Φ

(
ρ− ∥w∥2Σ
∥w∥Σ

)
− Φ

(
−ρ− ∥w∥2Σ

∥w∥Σ

)}
=

1

2
<

I(µ̄)

I(µ̄)− I(µ̄)
,

where the last last inequality follows from I(µ̄) + I(µ̄) > 0 and 1 > Φ (∥w∥Σ) > I(µ̄)

I(µ̄)−I(µ̄)
. Fur-

thermore, by applying the chain rule, ∂f(ρ)
∂ρ

< 0. Therefore, f(· ) is strictly decreasing in (0,∞).

We conclude that there must exist some unique ρ∗ > 0 such that f(ρ∗) = I(µ̄)

I(µ̄)−I(µ̄)
, or equivalently,∫ 1

0
Φ
(

2ρ∗x−ρ∗−∥w∥2Σ
∥w∥Σ

)
dx = −I(µ̄)

I(µ̄)−I(µ̄)
, which implies Eµ̄[d

∗
linear] =

I(µ̄)

I(µ̄)−I(µ̄)
.

Finally, we verify that Eµ̄[d
∗
step] =

I(µ̄)

I(µ̄)−I(µ̄)
. For any β ∈

(
0, 1

2

)
, consider the following step

function rule:
dstep,β :=

(
1

2
− β

)
1
{
w⊤Y < 0

}
+

(
1

2
+ β

)
1
{
w⊤Y ≥ 0

}
.

One then has

Eµ̄[dstep,β] =

(
1

2
− β

)
Φ (−∥w∥Σ) +

(
1

2
+ β

)
(1− Φ (−∥w∥Σ))

=
1

2
+ β (2Φ (∥w∥Σ)− 1) .

Setting Eµ̄[dstep,β∗ ] = I(µ̄)

I(µ̄)−I(µ̄)
yields β∗ =

I(µ̄)

I(µ̄)−I(µ̄)
− 1

2

2Φ(∥w∥Σ)−1
. As I(µ̄)+I(µ̄) > 0 and (3.3) holds, I(µ̄)

I(µ̄)−I(µ̄)
>

1
2

and therefore β∗ > 0. Furthermore, β∗ < 1
2

holds due to (3.3) as well. Since d∗step = dstep,β∗ , we
conclude that Eµ̄[d

∗
step] =

I(µ̄)

I(µ̄)−I(µ̄)
.

A.1.3 Statement (iii)

For any rule of form dw,c(Y ) := 1{w⊤Y ≥ c} where w = Σ−1µ̄ and c ∈ R, we may calculate

Eµ̄[dw,c(Y )] = 1− Φ

(
c− w⊤µ̄√
w⊤Σw

)

29



and (due to Lemma D.1, recalling ∥w∥2Σ= w⊤Σw = µ̄⊤Σ−1µ̄ )

g(c) := sup
π∈Γ

r(dw,c, π) =
1

2
max

{
I(µ̄)Φ

(
−∥w∥2Σ+c

∥w∥Σ

)
,−I(µ̄)Φ

(
∥w∥2Σ−c

∥w∥Σ

)}
+

1

2
max

{
−I(µ̄)Φ

(
∥w∥2Σ+c

∥w∥Σ

)
, I(µ̄)Φ

(
−∥w∥2Σ−c

∥w∥Σ

)}
.

Lemma B.5 shows that g is decreasing on [0, c∗] and increasing on [c∗,∞), implying that the optimal
threshold rule is dw,c∗ when c ∈ [0,∞). By symmetry, dw,−c∗ is optimal when c ∈ (−∞, 0], and
dw,−c∗ and dw,c∗ share the same worst-case expected regret.

A.1.4 Statement (iv)

In case (3.3) and when n > 1, there exists µ̇ ̸= 0 is such that µ̇⊤Σ−1µ̄ = 0, i.e., µ̇ is orthogonal to
Σ−1µ̄. For any t ∈ R, let

dwt,0(Y ) = 1{w⊤
t Y ≥ 0}, where wt = Σ−1(tµ̄+ (1− t)µ̇). (A.5)

Lemma B.6 shows that when t = t∗, Eµ̄[dwt∗ ,0(Y )] = I(µ̄)

I(µ̄)−I(µ̄)
. By symmetry, one then also has

E−µ̄[dwt∗ ,c(Y )] = −I(µ̄)

I(µ̄)−I(µ̄)
. Applying statement (ii) yields that dwt∗ ,0 is MMR optimal.

A.2 Proof of Corollary 1

In Example 1, I(µ̄) = µ̄+ k, I(µ̄) = µ̄− k, Σ = σ2. The results of the corollary follow directly from
Theorem 1(i)-(iii).

A.3 Proof of Theorem 2

Recall that the Γ-PER optimal rule solves

inf
a∈[0,1]

sup
π∈Γ

∫
θ̃∈Θ

L(a, θ̃)dπθ|Y (θ̃), ∀Y ∈ Rn,

where L(a, θ) = U(θ)(1{U(θ) ≥ 0} − a), and πθ|Y is the posterior distribution of θ given Y . If
randomization is not allowed, the Γ−PER optimal rule solves

inf
a∈{0,1}

sup
π∈Γ

∫
θ̃∈Θ

L(a, θ̃)dπθ|Y (θ̃), ∀Y ∈ Rn.
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Statement (i) then follows from Lemma C.1; statement (ii) follows from Lemma C.2.

A.4 Proof of Corollary 2

Directly follows from Theorem 2.

A.5 Proof of Corollary 3

(i) “If”: If I(µ̄) ≥ 0, then Theorem 1(i) and Theorem 2(i) apply and establish that d∗w,0 is both
the unique Γ-MMR and the unique Γ−PER optimal rule.

“Only if”: If I(µ̄) < 0, then d∗PER is uniquely Γ−PER optimal by Theorem 2(i). If condition (3.2)
holds as well, then Theorem 1(i) implies that d∗w,0 is uniquely Γ−MMR optimal; hence, Γ−MMR
and Γ−PER optimal rules disagree. If condition (3.3) applies, then, by Theorem 1(ii), a Γ-MMR
optimal rule must satisfy (3.4)-(3.5). But d∗PER can be written as

d∗PER = dstep,βPER =

1
2
− βPER, if w⊤Y < 0,

1
2
+ βPER, if w⊤Y ≥ 0,

where βPER = I(µ̄)

I(µ̄)−I(µ̄)
− 1

2
. Step 4 for the proof of Theorem 1(ii) shows that the only Γ−MMR

optimal rule of form dstep,β is d∗step ̸= d∗PER.

(ii) “If”: When randomization is not allowed, Theorem 2(ii) shows that d∗w,0 is always Γ−PER
optimal. Under condition (3.16), Theorem 1(i) establishes that d∗w,0 is Γ−MMR optimal as well.

“Only if”: Again, d∗w,0 is always Γ−PER optimal when randomization is not allowed. If (3.16)
fails (i.e., (3.3) holds) and n > 1, it follows by Theorem 1(iv) that the randomized rule d∗wt∗ ,0

is
Γ-MMR optimal. If n = 1, Theorem 1(iii) implies that d∗w,0 is not optimal even among linear
threshold rules. Therefore, when (3.3) holds, Γ-MMR and Γ-PER optimal rules disagree with and
without randomization.

B Technical Lemmas Supporting Ex-ante Analysis

Lemma B.1. The Bayes rule supported by prior (A.1) is d∗w,0.

Proof. Note I(µ̄) > 0 due to I(µ̄) + I(µ̄) > 0 and I(−µ̄) = −I(µ̄) by Lemma D.1. Given π∗, the
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Bayes optimal rule must solve the posterior problem

mina∈[0,1]

∫
θ̃∈Θ

L(a, θ̃)dπ∗
θ|Y (θ̃),∫

θ̃∈Θ
L(a, θ̃)dπ∗

θ|Y (θ̃) ∝ I(µ̄)(1− a) · 1
2
· f(Y |µ̄) + I(−µ̄)(−a) · 1

2
· f(Y | − µ̄),

where f(Y |µ̄) and f(Y | − µ̄) are the likelihood of Y at µ̄ and −µ̄. This problem is equivalent to

min
a∈[0,1]

I(µ̄)f(Y |µ̄) + a I(µ̄)︸︷︷︸
>0

(f(Y | − µ̄)− f(Y |µ̄)).

Since I(µ̄) > 0, the unique Bayes optimal rule is 1{f(Y | − µ̄) − f(Y |µ̄) ≤ 0}, which is equivalent
to d∗w,0 after further algebra.

Lemma B.2. Consider decision rule d∗w,0 and prior π∗ defined in (A.1). If (3.2) holds, then

sup
π∈Γ

r(d∗w,0, π) = r(d∗w,0, π
∗). (B.1)

Proof. As w⊤Y ∼ N(w⊤µ,w⊤Σw), algebra shows

Eµ[d
∗
w,0] = Φ

(
w⊤µ√
w⊤Σw

)
for all µ ∈ M . In particular,

Eµ̄[d
∗
w,0] = Φ

(
w⊤µ̄√
w⊤Σw

)
, E−µ̄[d

∗
w,0] = Φ

(
− w⊤µ̄√

w⊤Σw

)
.

It follows that

sup
π∈Γ

r(d∗w,0, π) =
1

2
max

{
I(µ̄)Φ

(
− w⊤µ̄√

w⊤Σw

)
,−I(µ̄)Φ

(
w⊤µ̄√
w⊤Σw

)}
+

1

2
max

{
I(−µ̄)Φ

(
w⊤µ̄√
w⊤Σw

)
,−I(−µ̄)Φ

(
− w⊤µ̄√

w⊤Σw

)}
,

and

r(d∗w,0, π
∗) =

1

2
I(µ̄)Φ

(
− w⊤µ̄√

w⊤Σw

)
− 1

2
I(−µ̄)Φ

(
− w⊤µ̄√

w⊤Σw

)
.

So, (B.1) holds as long as
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(i) I(µ̄)Φ
(
− w⊤µ̄√

w⊤Σw

)
≥ −I(µ̄)Φ

(
w⊤µ̄√
w⊤Σw

)
,

(ii) I(−µ̄)Φ
(

w⊤µ̄√
w⊤Σw

)
≤ −I(−µ̄)Φ

(
− w⊤µ̄√

w⊤Σw

)
,

both of which are the same as (3.2) after further algebra, recalling that I(−µ̄) = −I(µ̄) and
−I(−µ̄) = I(µ̄) by Lemma D.1, w = Σ−1µ̄, and ∥w∥Σ=

√
µ̄⊤Σ−1µ̄.

Lemma B.3. Consider the prior π∗ such that µ ∼ unif({−µ̄, µ̄}), and when µ = µ̄,

U(θ) =

I(µ̄), w.p. p1,

I(µ̄), w.p. 1− p1,

where p1 is such that p1I(µ̄) + (1− p1)I(µ̄) = 0, and when µ = −µ̄,

U(θ) =

I(−µ̄), w.p. p2,

I(−µ̄), w.p. 1− p2,

where p2 is such that p2I(−µ̄) + (1 − p2)I(−µ̄) = 0. Given this prior, any decision rule is Bayes
optimal under (3.3).

Proof. As (3.3) holds, we have I(µ̄) < 0 < I(µ̄). Analogous to Lemma B.1, a Bayes rule must solve

min
a∈[0,1]

1

2
· f(Y | µ̄)

[
p1I(µ̄)(1− a) + (1− p1)(−I(µ̄))a

]
+
1

2
· f(Y | −µ̄)

[
p2I(−µ̄)(1− a) + (1− p2)(−I(−µ̄))a

]
.

Since p1I(µ̄) + (1 − p1)I(µ̄) = 0 and p2I(−µ̄) + (1 − p2)I(−µ̄) = 0, the objective is constant in a,
hence the claim.

Lemma B.4. Consider the prior π∗ such that µ ∼ unif({−µ̄, µ̄}), when µ = µ̄,

U(θ) =

I(µ̄), w.p. p1,

I(µ̄), w.p. 1− p1,

where p1 is such that p1I(µ̄) + (1− p1)I(µ̄) = 0, and when µ = −µ̄,

U(θ) =

I(−µ̄), w.p. p2,

I(−µ̄), w.p. 1− p2,

33



where p2 is such that p2I(−µ̄) + (1− p2)I(−µ̄) = 0. Then, when (3.3) holds, we have

sup
π∈Γ

r(d, π) = r(d, π∗)

for any decision rule d ∈ Dn such that (A.2) is true.

Proof. Note again that (3.3) implies I(µ̄) < 0 and I(µ̄) > 0. For any decision rule d ∈ Dn such that
(A.2) is true, algebra shows

I(µ̄)(1− Eµ̄[d]) = −I(µ̄)Eµ̄[d] = − I(µ̄)I(µ̄)

I(µ̄)− I(µ̄)
,

I(−µ̄)(1− E−µ̄[d]) = −I(−µ̄)E−µ̄[d] = − I(µ̄)I(µ̄)

I(µ̄)− I(µ̄)
,

implying supπ∈Γ r(d, π) = − I(µ̄)I(µ̄)

I(µ̄)−I(µ̄)
. Meanwhile, for any d ∈ Dn such that (A.2) is true, we may

also calculate the following that yields the desired conclusion:

r(d, π∗) =
1

2
p1I(µ̄) +

1

2
p2I(−µ̄) = − I(µ̄)I(µ̄)

I(µ̄)− I(µ̄)
= sup

π∈Γ
r(d, π).

Lemma B.5. In case (3.3), the function

g(c) =
1

2
max

{
I(µ̄)Φ

(
−∥w∥2Σ+c

∥w∥Σ

)
,−I(µ̄)Φ

(
∥w∥2Σ−c

∥w∥Σ

)}
+

1

2
max

{
−I(µ̄)Φ

(
∥w∥2Σ+c

∥w∥Σ

)
, I(µ̄)Φ

(
−∥w∥2Σ−c

∥w∥Σ

)}
is decreasing in [0, c∗] and increasing in [c∗,∞).

Proof. Note when c ∈ [0, c∗) and (3.3) holds, we have −I(µ̄) > 0,

−I(µ̄)Φ

(
∥w∥2Σ−c

∥w∥Σ

)
> I(µ̄)Φ

(
−∥w∥2Σ+c

∥w∥Σ

)
,

−I(µ̄)Φ

(
∥w∥2Σ+c

∥w∥Σ

)
> I(µ̄)Φ

(
−∥w∥2Σ−c

∥w∥Σ

)
,

and therefore,

g(c) = −I(µ̄)

2

[
Φ

(
∥w∥2Σ−c

∥w∥Σ

)
+ Φ

(
∥w∥2Σ+c

∥w∥Σ

)]
,
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and
∂g(c)

∂c
= − I(µ̄)

2∥w∥Σ

[
ϕ

(
∥w∥2Σ+c

∥w∥Σ

)
− ϕ

(
∥w∥2Σ−c

∥w∥Σ

)]
< 0.

When c = c∗, note I(µ̄)Φ
(

−∥w∥2Σ+c∗

∥w∥Σ

)
= −I(µ̄)Φ

(
∥w∥2Σ−c∗

∥w∥Σ

)
and

g(c∗) = −I(µ̄)

2

[
Φ

(
∥w∥2Σ−c∗

∥w∥Σ

)
+ Φ

(
∥w∥2Σ+c∗

∥w∥Σ

)]
.

When c ∈ (c∗,∞), note

−I(µ̄)Φ

(
∥w∥2Σ−c

∥w∥Σ

)
< I(µ̄)Φ

(
−∥w∥2Σ+c

∥w∥Σ

)
,

−I(µ̄)Φ

(
∥w∥2Σ+c

∥w∥Σ

)
> I(µ̄)Φ

(
−∥w∥2Σ−c

∥w∥Σ

)
,

so that

g(c) =
1

2

{
I(µ̄)Φ

(
−∥w∥2Σ+c

∥w∥Σ

)
− I(µ̄)Φ

(
∥w∥2Σ+c

∥w∥Σ

)}
,

and
∂g(c)

∂c
=

1

2∥w∥Σ

{
I(µ̄)ϕ

(
−∥w∥2Σ+c

∥w∥Σ

)
− I(µ̄)ϕ

(
∥w∥2Σ+c

∥w∥Σ

)}
> 0.

Having shown that ∂g(c)
∂c

< 0 when c ∈ [0, c∗) and ∂g(c)
∂c

> 0 when c ∈ (c∗,∞), and since g(c) is
continuous at c = c∗, we conclude that g is decreasing in [0, c∗] and increasing [c∗,∞).

Lemma B.6. In case (3.3) and when n > 1, let

dwt,0(Y ) = 1{w⊤
t Y ≥ 0}, where wt = Σ−1(tµ̄+ (1− t)µ̇), µ̇ ̸= 0,

and µ̇⊤Σ−1µ̄ = 0. Then, Eµ̄[dwt∗ ,0(Y )] = I(µ̄)

I(µ̄)−I(µ̄)
, where t∗ is defined in (3.9).

Proof. Write f(t) := Eµ̄[dwt,c(Y )] = Φ

(
w⊤

t µ̄√
w⊤

t Σwt

)
and k∗ := I(µ̄)

I(µ̄)−I(µ̄)
. Then, it suffices to show

that f(t∗) = k∗, which is equivalent to showing(
w⊤

t∗µ̄
)2

w⊤
t∗Σwt∗

=
(
Φ−1 (k∗)

)2
.
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Furthermore, note

w⊤
t∗µ̄ = (t∗µ̄⊤Σ−1 + (1− t∗)µ̇⊤Σ−1)µ̄ = t∗µ̄⊤Σ−1µ̄+ (1− t∗) µ̇⊤Σ−1µ̄︸ ︷︷ ︸

=0

= t∗∥w∥2Σ

and

w⊤
t∗Σwt∗ = (t∗µ̄⊤Σ−1 + (1− t∗)µ̇⊤Σ−1)Σ(t∗Σ−1µ̄+ (1− t∗)Σ−1µ̇)

= (t∗)2µ̄⊤Σ−1µ̄+ 2t∗(1− t∗) µ̄⊤Σ−1µ̇︸ ︷︷ ︸
=0

+(1− t∗)2 µ̇⊤Σ−1µ̇︸ ︷︷ ︸
:=∥Σ−1µ̇∥2Σ

= (t∗)2∥w∥2Σ+(1− t∗)2∥Σ−1µ̇∥2Σ.

Therefore, substituting in these expressions, t∗ should be such that

(Φ−1(k∗))
2

∥w∥2Σ
=

(t∗)2∥w∥2Σ
(t∗)2∥w∥2Σ+(1− t∗)2∥Σ−1µ̇∥2Σ

.

As s∗ :=
(Φ−1(k∗))

2

∥w∥2Σ
∈ (0, 1) due to (3.3), we can solve the above equation for t∗, and after lengthy

algebra, find that

t∗ =
1

1±
√

(1−s∗)
s∗

· ∥w∥2Σ
∥Σ−1µ̇∥2Σ

.

C Technical Lemmas Supporting Ex-post Analysis

Lemma C.1. Suppose all the conditions of Theorem 1 hold. If I(µ̄) < 0 < I(µ̄), then the unique
Γ-PER optimal rule is

d∗PER(Y ) =


−I(µ̄)

I(µ̄)−I(µ̄)
, if w⊤Y < 0,

I(µ̄)

I(µ̄)−I(µ̄)
, if w⊤Y ≥ 0.

Otherwise, d∗w,0 is Γ-PER optimal.

Proof. Let f(Y | µ) be the likelihood of Y . Then, for each action a ∈ [0, 1], we have
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sup
π∈Γ

∫
θ̃∈Θ

L(a, θ̃)dπθ|Y (θ̃)

∝1

2

(
sup
πθ|µ̄

∫
θ̃∈Θ

U(θ̃)(1{U(θ̃) ≥ 0} − a)dπθ|µ̄(θ̃)

)
f(Y | µ̄)

+
1

2

(
sup
πθ|−µ̄

∫
θ̃∈Θ

U(θ̃)(1{U(θ̃) ≥ 0} − a)dπθ|−µ̄(θ̃)

)
f(Y | −µ̄)

=
1

2
f(Y | µ̄)max

{
I(µ̄)(1− a),−I(µ̄)a

}
+
1

2
f(Y | −µ̄)max

{
I(−µ̄)(1− a),−I(−µ̄)a

}
.

Therefore, when randomization is allowed, the Γ-PER optimal rule can be found by solving

inf
a∈[0,1]

VΓ(a), (C.1)

where

VΓ(a) := f(Y | µ̄)max
{
I(µ̄)(1− a),−I(µ̄)a

}
+ f(Y | −µ̄)max

{
I(µ̄)a,−I(µ̄)(1− a)

}
,

since I(−µ̄) = −I(µ̄) and −I(−µ̄) = I(µ̄) by Lemma D.1. Note that, for each action a ∈ [0, 1],

I(µ̄)(1− a) ≥ −I(µ̄)a ⇔ a ≤ I(µ̄)

I(µ̄)− I(µ̄)
,

I(µ̄)a ≥ −I(µ̄)(1− a) ⇔ a ≥ −I(µ̄)

I(µ̄)− I(µ̄)
,

where I(µ̄) − I(µ̄) ≥ 0 and I(µ̄) > 0 due to our normalization I(µ̄) + I(µ̄) > 0. The conclusion
follows from discussing the following two cases.

Case 1: I(µ̄) ≥ 0. In this case, −I(µ̄)

I(µ̄)−I(µ̄)
≤ a ≤ I(µ̄)

I(µ̄)−I(µ̄)
for all a ∈ [0, 1]. Thus, (C.1) becomes

inf
a∈[0,1]

I(µ̄)︸︷︷︸
>0

{f(Y | µ̄) + [f(Y | −µ̄)− f(Y | µ̄)] a} .

The Γ−PER optimal rule is 1 {f(Y | −µ̄)− f(Y | µ̄) ≤ 0}, which is d∗w,0 after further algebra.
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Case 2: I(µ̄) < 0 < I(µ̄). In this case, we have (again, note I(µ̄) + I(µ̄) > 0):

0 <
−I(µ̄)

I(µ̄)− I(µ̄)
<

I(µ̄)

I(µ̄)− I(µ̄)
< 1.

Therefore:

• When a ∈
[
0, −I(µ̄)

I(µ̄)−I(µ̄)

)
,

VΓ(a) =f(Y | µ̄)I(µ̄)(1− a)− f(Y | −µ̄)I(µ̄)(1− a)

=
{
f(Y | µ̄)I(µ̄) + f(Y | −µ̄) (−I(µ̄))

}︸ ︷︷ ︸
>0

(1− a).

Thus, VΓ(· ) is strictly decreasing in a ∈
[
0, −I(µ̄)

I(µ̄)−I(µ̄)

)
.

• When a ∈
[

−I(µ̄)

I(µ̄)−I(µ̄)
, I(µ̄)

I(µ̄)−I(µ̄)

)
,

VΓ(a) =f(Y | µ̄)I(µ̄)(1− a) + f(Y | −µ̄)I(µ̄)a

=f(Y | µ̄)I(µ̄) + I(µ̄)︸︷︷︸
>0

(f(Y | −µ̄)− f(Y | µ̄)) a.

Thus, if f(Y | −µ̄) > f(Y | µ̄), VΓ(· ) is strictly increasing in a, and if f(Y | −µ̄) < f(Y | µ̄),
VΓ(· ) is strictly decreasing in a. When f(Y | −µ̄) = f(Y | µ̄), VΓ(· ) is constant in a.

• When a ∈
[

I(µ̄)

I(µ̄)−I(µ̄)
, 1
]
,

VΓ(a) = (f(Y | −µ̄)I(µ̄)− f(Y | µ̄)I(µ̄))︸ ︷︷ ︸
>0

a,

implying that VΓ(· ) is strictly increasing in a.

In sum, if f(Y | −µ̄) > f(Y | µ̄), VΓ(· ) is first strictly decreasing and then increasing, with the
minimum achieved at a = −I(µ̄)

I(µ̄)−I(µ̄)
; if f(Y | −µ̄) < f(Y | µ̄), VΓ(· ) is first strictly decreasing

and increasing with the minimum achieved at a = I(µ̄)

I(µ̄)−I(µ̄)
; If f(Y | −µ̄) = f(Y | µ̄) (which only

happens in a null set), VΓ(· ) achieves minimum at any point between [ −I(µ̄)

I(µ̄)−I(µ̄)
, I(µ̄)

I(µ̄)−I(µ̄)
]. Therefore,
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the unique Γ−PER optimal rule is

d(Y ) =


I(µ̄)

I(µ̄)−I(µ̄)
, if f(Y | −µ̄) ≤ f(Y | µ̄) ⇐⇒ µ̄⊤Σ−1Y ≥ 0,

−I(µ̄)

I(µ̄)−I(µ̄)
if f(Y | −µ̄) > f(Y | µ̄) ⇐⇒ µ̄⊤Σ−1Y < 0.

Lemma C.2. Suppose all conditions of Theorem 1 hold true. Then, d∗w,0 is always the Γ-PER
optimal non-randomized rule.

Proof. When randomization is not allowed, we need to solve (by a similar derivation to Lemma
C.1) infa∈{0,1} VΓ(a), where VΓ(a) is defined in (C.1). As

VΓ(1) = −f(Y | µ̄)I(µ̄) + f(Y | −µ̄)I(µ̄),

VΓ(0) = f(Y | µ̄)I(µ̄)− f(Y | −µ̄)I(µ̄),

the optimal action would be a = 1 if and only if VΓ(1) ≤ VΓ(0), which is equivalent to d∗w,0 after
further algebra.

D Additional Results

Lemma D.1. Consider a treatment choice problem with welfare function (2.1), statistical model
(2.3) and a set of priors (2.9), that satisfies Assumption 1. Then, the following statements hold:

(i) I(−µ̄) = −I(µ̄), I(−µ̄) = −I(µ̄);

(ii) I(−µ̄) + I(−µ̄) = −(I(µ̄) + I(µ̄)).

Proof. Statement (i). Here, we only show that I(−µ̄) = −I(µ̄). An analogous argument proves
I(−µ̄) = −I(µ̄). By definition,

I(−µ̄) = sup
{θ∈Θ:m(θ)=−µ̄}

U(θ).
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Since Θ is centrosymmetric and both U(· ) and m(·) are linear, we have

sup
{θ∈Θ:m(θ)=−µ̄}

U(θ) = sup
{−θ∈Θ:−m(−θ)=−µ̄}

−U(−θ)

= sup
{θ̃∈Θ:−m(θ̃)=−µ̄}

−U(θ̃)

= −
{

inf
{θ̃∈Θ:m(θ̃)=µ̄}

U(θ̃)

}
= −I(µ̄)

as required.
Statement (ii). Directly follows from summing both equalities in statement (i).

Lemma D.2. In Example 1, suppose k >
√

π
2
σ. Then, if µ̄ > 0 is sufficiently small, the corre-

sponding Γ−PER optimal rule is dominated in terms of profiled regret.

Proof. Denote by d∗MMR,linear the least randomizing global MMR optimal rule derived in Mon-
tiel Olea et al. (2023). We aim to show that when k >

√
π
2
σ and µ̄ > 0 is sufficiently small, the

associated Γ-PER optimal rule d∗PER is such that

R̄(d∗PER, µ) ≥ R̄(d∗MMR,linear, µ), for all µ ≥ 0, (D.1)

with the inequality strict for all µ > 0. A symmetry argument then immediately implies that d∗PER
is dominated in terms of profiled regret.

Step 1 Pick any 0 < µ̄ <
√

π
2
σ. We show that R̄(d∗PER, µ) = (µ + k) (1− Eµ [d

∗
PER(µ̂)]) for all

µ ≥ 0. By results in Montiel Olea et al. (Appendix B.3.1, 2023), we may write the profiled regret
of a rule d as

R̄(d, µ)

=


(−µ+ k)Eµ [d(µ̂)] , if µ < −k,

max {(µ+ k) (1− Eµ [d(µ̂)]) , (−µ+ k)Eµ [d(µ̂)]} , if − k ≤ µ ≤ k,

(µ+ k)(1− Eµ [d(µ̂)]), if µ > k.
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Thus, it suffices to show

max {(µ+ k) (1− Eµ [d
∗
PER(µ̂)]) , (−µ+ k)Eµ [d

∗
PER(µ̂)]}

=(µ+ k) (1− Eµ [d
∗
PER(µ̂)])

for any 0 ≤ µ ≤ k. As
√

π
2
σ < k, Corollary 2 implies that the corresponding Γ−PER rule for any

0 < µ̄ <
√

π
2
σ is

d∗PER(µ̂) =
k + µ

2k
1 {µ̂ ≥ 0}+ k − µ

2k
1 {µ̂ < 0}

=
1

2
+

µ

2k
(1 {µ̂ ≥ 0} − 1 {µ̂ < 0}) ,

and further algebra shows Eµ [d
∗
PER(µ̂)] =

1
2
+ µ

2k

(
1− 2Φ

(
−µ

σ

))
. Then,

(µ+ k) (1− Eµ [d
∗
PER(µ̂)]) ≥ (−µ+ k)Eµ [d

∗
PER(µ̂)]

if and only if

(µ+ k)

(
1

2
− µ

2k

(
1− 2Φ

(
−µ

σ

)))
≥ (−µ+ k)

(
1

2
+

µ

2k

(
1− 2Φ

(
−µ

σ

)))
,

which is equivalent to
µ(

1− 2Φ
(
−µ

σ

)) ≥ µ. (D.2)

Note the left hand side of (D.2) is increasing in µ, and limµ↓0

(
µ

(1−2Φ(−µ
σ ))

)
= σ

2ϕ(0)
= σ

√
π
2
> µ.

As 0 < µ̄ <
√

π
2
σ, we conclude that (D.2) indeed holds, and it follows

R̄(d∗PER, µ) = (µ+ k) (1− Eµ [d
∗
PER(µ̂)]) , (D.3)

for all µ ≥ 0. As a result, we conclude that, for any 0 < µ̄ <
√

π
2
σ, we have

R̄(d∗PER, µ) = (µ+ k)

(
1

2
− µ

2k

(
1− 2Φ

(
−µ

σ

)))
, for all µ ≥ 0.
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Step 2 We show that R̄(d∗PER, µ) is strictly increasing in µ for any 0 < µ̄ <
√

π
2
σ small enough.

To see this, note

∂R̄(d∗PER, µ)

∂µ
=

1

2
− µ

2k

(
1− 2Φ

(
−µ

σ

))
− (µ+ k)

µ

k

1

σ
ϕ
(µ
σ

)
=

1

2
− µ

2k

(
1− 2Φ

(
−µ

σ

)
+ 2(µ+ k)

1

σ
ϕ
(µ
σ

))
,

in which note (1): 0 < 1−2Φ
(
−µ

σ

)
≤ 1 for all µ ≥ 0, and (2): 2(µ+k) 1

σ
ϕ
(
µ
σ

)
> 0 is first increasing

and then decreasing with a unique and finite maximum Ck > 0. Therefore, we conclude that for
any 0 < µ < min

(
k

(1+Ck)
,
√

π
2
σ
)
, we have ∂R̄(d∗PER,µ)

∂µ
> 0 for all µ ≥ 0. That is, R̄(d∗PER, µ) is strictly

increasing in µ ∈ [0,∞].

Step 3 Montiel Olea et al. (2023) have already shown that

sup
µ≥0

R̄(d∗MMR,linear, µ) = R̄(d∗MMR,linear, 0) =
k

2
.

Then, by the conclusion from step 3 and noting R̄(d∗PER, 0) = k
2
, we see that (D.1) indeed holds

with the inequality strict for all µ > 0, completing the proof.
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